M. S. Ramaiah University of Applied Sciences Programme Structure and Course Details of B.Sc. (Hons) in Biotechnology Programme Code: 018 BATCH 2024 onwards Department of Biotechnology Faculty of Life and Allied Health Sciences M S Ramaiah University of Applied Sciences Approved by the Academic Council at its 26th meeting held on 14th July 2022 Revised and Approved by the 28th and 31st Academic Council meeting held on the 3rd April 2023 and 22nd March 2024 respectively Shrute Water Faculty of Life & Allied Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 Dean - Academics Dean - Academics Dean - Academics Of Applied Sciences M.S. Ramaiar University of Applied Sciences Bangalule - 550 054 ## University's Vision, Mission and Objectives The M. S. Ramaiah University of Applied Sciences (MSRUAS) will focus on student-centric professional education and motivates its staff and students to contribute significantly to the growth of technology, science, economy and society through their imaginative, creative and innovative pursuits. Hence, the University has articulated the following vision and objectives. #### Vision MSRUAS aspires to be the premier university of choice in Asia for student centric professional education and services with a strong focus on applied research whilst maintaining the highest academic and ethical standards in a creative and innovative environment #### Mission Our purpose is the creation and dissemination of knowledge. We are committed to creativity, innovation and excellence in our teaching and research. We value integrity, quality and teamwork in all our endeavors. We inspire critical thinking, personal development and a passion for lifelong learning. We serve the technical, scientific and economic needs of our Society. ## **Objectives** - To disseminate knowledge and skills through instructions, teaching, training, seminars, workshops and symposia in Engineering and Technology, Art and Design, Management and Commerce, Health and Allied Sciences, Physical and Life Sciences, Arts, Humanities and Social Sciences to equip students and scholars to meet the needs of industries, business and society - To generate knowledge through research in Engineering and Technology, Art and Design, Management and Commerce, Health and Allied Sciences, Physical and Life Sciences, Arts, Humanities and Social Sciences to meet the challenges that arise in industry, business and society - 3. To promote health, human well-being and provide holistic healthcare - 4. To provide technical and scientific solutions to real life problems posed by industry, business and society in Engineering and Technology, Art and Design, Management and Commerce, Health and Allied Sciences, Physical and Life Sciences, Arts, Humanities and Social Sciences - To instill the spirit of entrepreneurship in our youth to help create more career opportunities in the society by incubating and nurturing technology product ideas and supporting technology backed business - 6. To identify and nurture leadership skills in students and help in the development of our future leaders to enrich the society we live in - 7. To develop partnership with universities, industries, businesses, research establishments, NGOs, international organizations, governmental organizations in India and abroad to enrich the experiences of faculties and students through research and developmental programmes Dear 2 of 2178 M.S. Ramaiah University of Applied Sciences Bangalore - 650 057 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 # Programme Specifications: B.Sc. (Hons) in Biotechnology | Faculty | Life and Allied Health Sciences | |------------------------|---------------------------------| | Department | Biotechnology | | Programme Code | 018 | | Programme Name | B.Sc. (Hons) in Biotechnology | | Dean of the Faculty | Dr. Soma Chaki | | Head of the Department | Dr. Shruti Mathur | - 1. Title of the Award: B.Sc. (Hons) in Biotechnology - 2. Mode of Study: Full Time - 3. Awarding Institution /Body: M. S. Ramaiah University of Applied Sciences - 4. Joint Award: Not Applicable - Teaching Institution: Department of Biotechnology, Faculty of Life and Allied Health Sciences, M. S. Ramaiah University of Applied Sciences, Bengaluru - 6. Date of Programme Specifications: July 2022 - 7. Date of Programme Approval by the Academic Council of MSRUAS: 14-07-2022 - 8. Next Review Date: June 2026 - Programme Approving Regulating Body and Date of Approval: Academic Council of MSRUAS on 14-07-2022, 03-04-2023 and 22-03-2024 - 10. Programme Accredited Body and Date of Accreditation: Not Applicable - 11. Grade Awarded by the Accreditation Body: Not Applicable - 12. Programme Accreditation Validity: Not Applicable - 13. Programme Benchmark: Not Applicable ## 14. Rationale for the Programme B.Sc. (Hons) in Biotechnology is an undergraduate degree Programme designed to create innovative problem solvers with a multi-disciplinary approach, entrepreneurs and leaders that apply their knowledge, understanding, cognitive abilities, practical skills and transferable skills gained through systematic, flexible and rigorous learning in the chosen academic domain towards betterment of society. With the current trends of National Education Policy (NEP) – 2020 and Self-Employment, there is a tremendous need for a young workforce with skillset that will make the students readily employable, for various roles in academia and industry. The objective is to bridge the gap between the current system of education and what is required in the 21st century. It is to have Holistic and Multidisciplinary UG Education to produce employable graduates with well-rounded personality. The Government of Karnataka had constituted a Task to suggest an implementation Framework for NEP-2020. It had also constituted two sub-committees, one on Curriculum Reforms in Higher Education and the other on Governance and Regulations. Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramaian University of Applied Sciences Banguloro - 560 054 Page 3 of 211 Territory of Applied Sciences M.S. Ramaiab entirectly of Applied Sciences Eangalore - 560 054 B.Sc. (Hons) in Biotechnology is an undergraduate degree that imparts knowledge and understanding of biological systems and their behaviour for various inputs/stimuli originating from the surrounding environment. The Programme also provides sufficient understanding and cognitive abilities to design, B.Sc. (Hons) Biotechnology-Programme Specification develop and incorporate scientific methods, techniques, and processes for biological systems of study to achieve the desired results. In addition, the programme imparts knowledge and training to develop transferable skills and entrepreneurship abilities. The Task Force has suggested NEP-2020 Implementation Framework for Karnataka. The State Government has accepted the action plan and initiated steps to implement NEP-2020, as per the Roadmap suggested by the Task Force. The curriculum is outcome based and it imbibes required theoretical concepts and practical skills in the domain. By undergoing this Programme, students develop critical, analytical thinking and problem-solving abilities for a smooth transition from academic to real-life work environment. Special emphasis shall also be provided to Ability and Skill Enhancement/Vocational Courses as well as Value Added Courses. Opportunities are provided for the students to do internship in Life science and Biotechnology institutes and industry, research & development and also execute a well-defined project independently as well as in a team to enhance practical skills and problem-solving abilities. The students are required to submit a well written project report as partial fulfilment for the award of the degree, which will help develop skills of documenting scientific research methods and outcome. This Undergraduate Programme—is meant to highlight systemic change in the higher education system in MSRUAS and align itself with the National Education Policy - 2020. ## 15. Programme Mission The purpose of the programme is to create innovative problem solvers with a multidisciplinary approach, entrepreneurs and leaders that apply their knowledge, understanding, cognitive abilities, practical skills and transferable skills gained through systematic, flexible and rigorous learning in the chosen academic domain towards betterment of society. ## 16. Graduate Attributes - GA-1. Ability to apply fundamental knowledge of Biology, Chemistry, Mathematics, Statistics and computer to solve real life problems in their chosen domain - GA-2. Ability to perform administrative duties in government, semi-government, private and public sector organizations - GA-3. Ability to teach in schools, colleges and universities with additional qualification and training - GA-4. Ability to understand and solve scientific problems by conducting experimental investigations - GA-5. Ability to apply appropriate tools, techniques and understand utilization of resources appropriately in various Laboratories - GA-6. Ability to apply basic programming concepts in their chosen domains - GA-7. Ability to understand the effect of scientific solutions on legal, cultural, social and public health and safety aspects - GA-8. Ability to develop sustainable solutions and understand their effect on society and environment GA-9. Ability to apply ethical principles to scientific practices and professional responsibilities - GA-10. Ability to work in a team, to plan and to integrate knowledge of various disciplines and to lead teams in multidisciplinary settings - GA-11. Ability to effectively convey scientific ideas and concepts to a broad audience using both written and verbal means - GA-12. Ability to adapt to the changes and advancements in science and engage in independent and life-long learning. Par ## 17. Programme Outcomes (POs) - B.Sc. (Hons)
Biotechnology graduates will be able to: - **PO 1. Knowledge and Understanding:** Gain knowledge of life science fundamentals and applied biotechnological aspects with an understanding of their applications towards solving real life problems. - PO 2. Design research involving appropriate methodology and develop novel solutions leading to new Knowledge Creation: Identify real life problems in areas of basic biology, agriculture, medicine, industry, environment and collect appropriate data for analysis; Analyse the identified problem, design a logical experimental work flow, and develop innovative, novel and long-term solutions to real life problems in basic biology, agriculture, medicine, industry, and environment; Create new knowledge including discovery of foundational principles, new methods, strategies, tools. - **PO 3. Application of modern laboratory tools, techniques:** Gain skills enabling effective use of laboratory tools, techniques and resources. - **PO 4. Programming and Data analysis:** Apply programming and data analytical tools and techniques to solve scientific problems. - **PO 5. Multidisciplinary approach:** Evaluate problems through multiple perspectives and apply knowledge of various disciplines to effectively define a research problem and design a study based on research. - PO 6. Communication: Disseminate knowledge effectively through scientific writing and verbal communication. - **PO 7.** Leadership and teamwork: Apply professional ethics, leadership, and team building skills in profession and entrepreneurial initiatives. - PO 8. Understand system processes and manage tasks: Apply scientific knowledge to execute industrial projects and administration to minimize errors. - PO 9. Social Responsibility and Ethics: Apply ethical principles in scientific research, profession and become aware of societal responsibilities. - **PO 10. Environment and Sustainability**: Understand the impact of the scientific research on society and environment and select judicious modes of application for sustainable development. - **PO 11. Entrepreneurial Skills:** Enhancing self-employability by applying the basic and applied scientific knowledge acquired. - **PO 12. Lifelong learning:** Adapt to advancements in science and engage in independent life-long learning aimed towards up-skilling and maintaining relevance to changing times and trends in a continuous manner. Page 5 of 211 M S Ramaian University of Applied Sciences Bangalore - 560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M.S. Ramarah University of Applied Sciences Bangalore - 560 054 ## 18. Programme Goal The programme acts as a foundation degree and helps to develop critical, analytical and problem-solving skills at first level. The foundation degree makes the graduates employable in scientific organisations and also to assume administrative positions in various organisations. With additional qualifications and training help the graduates to pursue various career paths in academics, research and industries. The goals of the Programme include: - Promote holistic development - Ability to choose learning trajectories and programmes - Eliminate harmful hierarchies among disciplines/fields of study and silos between different areas of learning - Multidisciplinary and holistic education to ensure unity and integrity of knowledge - Promote creativity and critical thinking to encourage logical decision-making along with appreciating ethical, human & constitutional values - Promote multilingualism and power of language in learning and teaching - Impart life skills such as communication, cooperation, tearnwork, and resilience - Facilitate outstanding research as a co-requisite for outstanding education and development ## 19. Programme Educational Objectives (PEOs) The Bachelor of Science honours degree programme in Biotechnology imparts knowledge and understanding of biological systems and their behaviour for various inputs/stimuli originating from the surrounding environment. The Programme also provides sufficient understanding and cognitive abilities to design, develop and incorporate scientific methods, techniques, and processes for biological systems of study to achieve the desired results. In addition, the programme imparts knowledge and training to develop transferable skills and entrepreneurship abilities. The objectives of the programme are to enable the students to: **PEO-1**: To prepare graduates for their professional career in Biotechnology domain towards employment and /or academic progression **PEO-2**: To introduce graduates to a multidisciplinary approach, research-based higher order thinking to drive novel solution creation to alleviate real life problems. **PEO-3**: To impart various abilities and skills, that enhance holistic development, and promote lifelong learning ## 20. Programme Specific Outcomes (PSOs) **PSO 1:** Create an inclusive environment in which theories of fundamental and applied courses in Biotechnology are explored to learn along with integration of knowledge towards a better tomorrow. **PSO 2**: Enable program audience for channelizing efforts in identifying the requirements and problems in Biotechnology in order to earn appropriate solutions for a progressive society. Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramaiah University of Applied Sciences Bangalore - 560 054 M.S. Raha Bangalore 597 05 PSO 3: Provide an environment with opportunity to obtain various abilities and skills promoting holistic development, employability and lifelong learning. # 21. Programme Structure ## Semester 1 | SI.No. | Code | Course Title | Theory (h/W/S) | Tutorials
(h/W/S) | Practical
(h/W/S) | Total
Credits | Max.Marks | |--------|-----------------|---|----------------|----------------------|----------------------|------------------|-----------| | 1 | BTC101A | Macromolecular
structure and
analysis | 3 | | 4 | 5 | 100 | | 2 | BTC102A | Biological
techniques and
Instrumentation | 3 | | 4: | 5 | 100 | | 3 | BTC103A | Biomathematics and MATLAB | 2 | 1 | | 3 | 100 | | 4 | BTO101A | Fundamentals in
Biology | 3 | | | 3 | 100 | | 6 | TSM101A | English for
Communication 1 | 3 | | | 3 | 100 | | 7 | CSM101A | Digital Fluency | 1 | | 2 | 2 | 50 | | | | Total | 15 | 1 | 10 | 21 | 550 | | _ | Total no of cor | ntact hours per week | | 26 | | | | *(h/W/S): Hours/week/semester ### Semester 2 | SI.No. | Code | Course Title | Theory
(h/W/S) | Tutorials
(h/W/S) | Practical
(h/W/S) | Total
Credits | Max.Marks | |--------|----------------|--|-------------------|----------------------|----------------------|------------------|-----------| | 1 | BTC104A | General Chemistry 1 | 3 | | 4 | 5 | .100 | | 2 | BTC105A | Principles of
Microbiology | 3 | | 4 | 5 | 100 | | 3 | BTC106A | Organic
Mechanisms in
Blology | 3 | | | 3 | 100 | | 4 | BTO102A | Biotechnology for
HumanWelfare | 3 | | | 3 | 100 | | 5 | BTN101A | Environmental
Studies | 2 | | | 2 | 50 | | 6 | AHU101A | Health and
wellness/social
and emotional
learning | 1 | | 2 | 2 | 50 | | | | Total | 15 | | 10 | 20 | 500 | | Tota | I number of co | ntact hours per week | | 25 | | | | *(h/W/S): Hours/week/semester Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Department of March 2024 M S Ramalah University of Applied Sciences Bangalore - 560 054 Page 7 of 211 University of Applied Sciences M.S. Rampias Onivesto - 560 054 ## Semester 3 | Si.No. | Code | Course Title | Theory
(h/W/S) | Tutorials
(h/W/S) | Practical
(h/W/S) | Total
Credits | Max.
Marks | |--------|---------------|--|-------------------|----------------------|----------------------|------------------|---------------| | 1 | BTC201A | General Chemistry 2 | 3 | | 4 | 5 | 100 | | 2 | BTC202A | Principles of Genetics | 3 | | 4 | 5 | 100 | | 3 | BTC203A | Biostatistics | 3 | | | 3 | 100 | | 4 | BTO201A | Applications of
Biotechnology in
Agriculture | 3 | | | 3 | 100 | | 5 | TSM102A | English for
Communication 2 | 3 | | | 3 | 100 | | 6 | CSM201A | Al | 1 | | 2 | 2 | 50 | | 7 | BAU201A | Innovation and Entrepreneurship | 1 | 1 | 2 | 3 | 100 | | Total | | | 17 | 1 | 12 | 24 | 650 | | To | tal number of | contact hours per week | | 30 | 11 | | | *(h/W/S): Hours/week/semester ## Semester 4 | SI.No. | Code | Course Title | Theory
(h/W/S) | Tutorials
(h/W/S) | Practical
(h/W/S) | Total
Credits | Max.
Marks | |--------|----------------|---|-------------------|----------------------|----------------------|------------------|---------------| | 1 | BTC204A | Cell Structure and
Signaling | 3 | | 4 | 5 | 100 | | 2 | BTC205A | Molecular Biology | 3 | | 4 | 5 | 100 | | 3 | BTC206A | Molecular genetics | 3 | | | 3 | 100 | | 4 | BTO202A | Applications of
Biotechnology in
Medicine | 3 | | | 3 | 100 | | 5 | LAN101A | Constitution of India and Human Rights | 2 | | | 2 | 50 | | 6 | TSU202A | Professional
Communication | 2 | | | 2 | 50 | | 7 | TSU101A | Ethics and Self-
awareness | 1 | | 2 | 2 | 50 | | | | Total | 17 | | 10 | 22 | 550 | | To | otal number of | contact hours per week | | 27 | | | | *(h/W/S): Hours/week/semester Department of Blotschnology Ramalah University of Applied Sciences Page 8 of 211 Dead Academics Academics M.S. Ramain Blangalore - 630 054 ## Semester 5 | SI.No. | Code | Course Title | Theory
(h/W/S) | Tutorials
(h/W/S) | Practical
(h/W/S) | Total
Credits | Max.
Marks | |--------|--------------|---------------------------------------|-------------------|----------------------|----------------------|------------------|---------------| | 1 | BTC301A | Recombinant DNA
Technology | 3 | | 4 | 5 | 100 | | 2 |
BTC302A | Immunology and
Immunotechnology | 3 | | 4 | 5 | 100 | | 3 | BTC303A | Computer Programming:
Python and R | 1 | 2 | | 3 | 100 | | 4 | BTE301A | Environmental
Biotechnology | | | | | 400 | | 5 | BTE302A | Agricultural Biotechnology | 3 | | | 3 | 100 | | 6 | BTE303A | Medical Biotechnology | | | | l | | | 7 | TSN201A | Project Management | 3 | | | 3 | 50 | | 8 | CSM301A | Cyber security | 1 | | 2 | 2 | 50 | | 9 | DSU101A | Sports/Yoga/NSS/Cultural | 11 | | 2 | 2 | 50 | | | | Total | 15 | | 12 | 23 | 550 | | | Total number | r of contact hours per week | | 27 | | | | *(h/W/S): Hours/week/semester ## Semester 6 | SI.No. | Code | Course Title | Theory
(h/W/S) | Tutorials
(h/W/S) | Practical
(h/W/S) | Total
Credits | Max.Marks | |--------|----------------|--|-------------------|----------------------|----------------------|------------------|-----------| | 1 | BTC304A | Animal Biotechnology
and Animal tissue
culture | 3 | (• | | 5 | 100 | | 2 | BTC305A | Plant Biotechnology
and Plant tissue
culture | 3 | | | 5 | 100 | | 3 | BTC306A | Biosafety, Bioethics and IPR | 3 | | | 3 | 100 | | 4 | BTE305A | Industrial
Biotechnology | 3 | | | 3 | 100 | | 5 | BTE306A | Pharmaceutical
Biotechnology | | | | | 100 | | 6 | TSN302A | Personality Development and Soft Skills | 2 | | | 2 | 50 | | 7 | BTM301A | Competitive Exam
Training | 1 | 1 | | 2 | 50 | | 8 | BTN301A | Seminar | | 2 | | 2 | 50 | | | | Total | 15 | 2 | 12 | 22 | 550 | | Т | otal number of | contact hours per week | | 29 | | | | *(h/W/S): Hours/week/semester Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramaich University of Applied Sciences Bangalore - 560 054 M.S. Ramaiah Univesity Hed Sciences Bangalore - 750 054 #### Semester 7 | Si.No. | Code | Course Title | Theory
(h/W/S) | Tutorials
(h/W/S) | Practical
(h/W/S) | Total
Credits | Max.Marks | |--------|----------------|---|-------------------|----------------------|----------------------|------------------|-----------| | 1 | BTC401A | Bioinformatics | 3 | | 4 | 5 | 100 | | 2 | BTC402A | Genomics and
Proteomics | 3 | | 4 | 5 | 100 | | 3 | BTC403A | Research Methodology | 3 | | | 3 | 100 | | 4 | BTE401A | Stem cells and
Regenerative
medicine | | | | | 4.5. | | 5 | BTE402A | Nanobiotechnology | 3 | | | 3 | 100 | | 6 | BTE403A | Green Energy
Technologies | | | | | | | 7 | BTS401A | Internship/Vocational
course/Training
program/Project | | | 6 | 3 | 100 | | | | Total | 12 | 2 | 14 | 19 | 500 | | To | otal number of | contact hours per week | | 28 | | | - | *(h/W/S): Hours/week/semester #### Semester 8 | SI.No. | Code | Course Title | Theory
(h/W/S) | Tutorials
(h/W/S) | Practical
(h/W/S) | Total
Credits | Max.Marks | |--------|----------------|------------------------|-------------------|----------------------|----------------------|------------------|-----------| | 1 | BTP401A | Research Project | | | 40 | 21 | 200 | | | | Total | | | 40 | | | | T | otal number of | contact hours per week | | 40 | | | | The Program Structure was initially conceptualized, presented, and officially endorsed during the 26th ACM meeting on July 14th , 2022. Subsequently, revisions were introduced during the 28th ACM meeting on April 3rd ,2023, and on 22nd March 2024 and these inputs have been incorporated. In addition to the programme structure students will be provided Value Added Courses for enhancing skill development, entrepreneurship and team work. These courses are not counted in the total credits. Page 10 of 211 Dean - Academics M.S. Rangiah University of Applied Science Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Me partment (Albertanology M S Ramaian University of Sciences Bangalore - 560 054 ## 22. Ability and Skill Enhancement Courses - Ability Enhancement Compulsory Courses (AECC): AECC courses are the courses based upon the content that leads to knowledge enhancement through various areas of study, which will be mandatory for all disciplines: - Language and Literature - 2. Environmental Science and Sustainable Development/ Environmental Studies - 3. Constitution of India and Human Rights, Human rights - 4. Project Management - 5. Competitive Exam Training - Skill Enhancement Courses (SEC)/ Vocational Courses: These are skill-based courses in all disciplines and are aimed at providing hands-on-training, competencies, skills, etc. SEC courses may be chosen from the pool of courses designed to provide skill-based instruction: - 1. Digital Fluency - 2. Artificial Intelligence & ML - 3. Cyber Security - 4. Professional Communication - 5. Industry visit/ Vocational Course - 6. Internship/training - 7. Innovation and Entrepreneurship - Value Added courses: These courses are value-based courses which are meant to inculcate ethics, culture, soft skills, sports education and such similar values to students which will help in all round development of students. - 1. Health & Wellness/ Social & Emotional Learning - Sports/ Yoga/NCC/NSS - 3. Ethics & Self Aware-ness - Open Elective Courses: A number of Open Elective Courses from various Faculties of RUAS are offered as mentioned in the University's website. Students can choose the Open Electives of their choice. The students are permitted to choose online electives from the list approved by the respective HOD and Dean. - Innovation Courses in Lieu of Open Elective Courses: Students can earn 3credits by participating in innovation activities as per the approved guidelines in lieu of Open Elective Courses. The activities could be related to any of the following: - 1. Design Thinking and Innovation - 2. Skill Development - 3. Industrial Problem Solving and Hackathons - 23. Course Delivery: As per the Timetable ## 24. Teaching and Learning Methods - 1. Face to Face Lectures using Audio-Visuals - 2. Workshops, Group Discussions, Debates, Presentations - 3. Demonstrations - 4. Guest Lectures - Laboratory work/Field work/Workshop - 6. Industry Visit Page 11 of 211 Dean - Applied Sciences Bangalo e 560 054 Final Approval by the Academic Council in its 31st meeting held on 22st March 2024 Departmental Bit exhibitory M S Rameish University of Applied Sciences Bangaluro - 560 054 - 7. Seminars - 8. Group Exercises - 9. Project Work - 10. Project - 11. Exhibitions - Technical Festivals ## 25. Major Features - 4th year option will be offered in all B.Sc. programs for those who qualify (with 7.5 CGPA after completion of 3rd year) - 1st year: Certificate 2nd year: Diploma - 3rd year: Bachelors or Bachelor (Honors) - 4th vear: Bachelor (Honors with Research) # 26. Assessment and Grading (Subject to endorsement of revised unified academic regulations for 2022-23- report submitted) ## 26.1 Components of Grading There shall be two components of grading in the assessment of each course: Component 1, Continuous Evaluation (CE): This component involves multiple subcomponents (SC1, SC2, etc.) of learning and experiential assessment. The assessment of the subcomponents of CE is conducted during the semester at regular intervals. This subcomponent represents the formative assessment of students' learning. Component 2, Semester-end Examination (SEE): This component represents the summative assessment carried out in the form an examination conducted at the end of the semester Marks obtained CE and SEE components have 60:40 weightage (CE: 60% and SEE: 40%) in determining the final marks obtained by a student in a Course. The complete details of Grading are given in the Academic Regulations. ## 26.2 Continuous Evaluation Policies Continuous evaluation depends on the type of the course as discussed below: 26.2.1 Theory Courses | Focus of | | Courses Only
ant or Subcomponent of | Evaluation | |---------------------|-----------------|--|------------| | | Component 1: CE | Component 2: SEE
(40% Weightage) | | | Subcomponent Type → | Terms Tests | Assignments | | | CO-1 | | | | | CO-2 | | | | | CO-3 | | | | | CO-4 | | | | | CO-5 | | | | | CO-6 | | | | The details of number of tests and assignments to be conducted are presented in the Academic Regulations and Programme Specifications Document. Final Approval by the Academic Council in its 31st meeting held on 22rd March 2024 Ramajah Upimpratin el Applied Scienc. - CE components should have a mix of term tests, quiz and assignments - Two Tests (15 each), Two Assignments (20 marks). (One written and another to be MCQs) - Course leaders to declare the assessment components before the commencement of the session and get approval from HoD and Dean 26.2.2 Laboratory Course | | For Laboratory Courses | Only | | | |---------------------|---------------------------|-----------------------------|-------------------------------------|--| | Focus of COs on ea | ach Component or Subco | imponent of Evaluation | ON . | | | | Component 1: CE | (60% Weightage) | Component 2: SEE
(40% Weightage) | | | Subcomponent Type → | Conduct of
Experiments | Laboratory
Report + Viva | | | | CO-1 | | | | | | CO-2 | | | | | | CO-3 | | | Laboratory SEE | | | CO-4 | | | | | | CO-5 | | | | | | CO-6 | | | | | The details of number of tests and assignments to be conducted are presented in the Academic Regulations and Programme Specifications Document The subcomponents can be of any of the following types: - Laboratory / Clinical Work Record - Experiments - Computer Simulations - Creative Submission - Virtual Labs - Viva / Oral Exam - Lab Manual Report - Any other (e.g. combinations) Course leaders to declare the assessment components before the commencement of the session and get approval from HoD and Dean ## 26.2.3 Course Having a Combination of Theory and Laboratory For a course that contains the combination of theory and laboratory sessions, the scheme for
determining the CE marks is as under: Department of Biotechnology M S Romalate Lindvarially of Applied Sciences 100000 100 - 200 054 Page 13 of 211 M.S. Ramalah University of Applied Sciences Bangalore - 560 054 | | For | Combined Course | es (Theory + Labo | ratory) | | |-------------------|--------------|---|-----------------------------|-------------------------|-----------| | | Focus of COs | on each Compone | ent or Subcompon | ent of Evaluation | | | Course
Outcome | Four compone | CE
(Weightage: 60 %
nts including one | SEE
(Weightage: 25
%) | Lab (Weightage
15 %) | | | | Tests (30 %) | Written Assignments+ Lab (20 %) | Assignment
+Lab CE (10%) | Written exam | LSEE: SEE | | CO-1 | | , , | | | | | CO-2 | | | | | | | CO-3 | | | | | | | CO-4 | | | | | | | CO-5 | | | | | | | CO-6 | | | | | | - CE components should have a mix of term tests, quiz and assignments - Two Tests (15 each), Two Assignments (20 marks). (One written and another to be MCQs) - In case of courses where laboratory is combined with theory, laboratory components to be assessed in both CE and SEE - Course leaders to declare the assessment components before the commencement of the session and get approval from HoD and Dean 26.2.4 Ability Enhancement courses Regulations and Programme Specifications Document. | Focus of COs on ea | For AECC Only
ch Component or Subcomponent of | Evaluation | |---------------------|--|------------------| | | Component 1: CE (60%
Weightage) | | | Subcomponent Type → | Terms Tests or
Assignments | | | CO-1 | | | | CO-2 | | Component 2: SEE | | CO-3 | | (40% Welghtage) | | CO-4 | | | | CO-5 | | | | CO-6 | | | The details of number of tests and assignments to be conducted are presented in the Academic Regulations and Programme Specifications Document. Course leaders to declare the assessment components before the commencement of the session and get approval from HoD and Dean Page 14 of 211 Dean - Academics M.S. Ramaiah University of Applied Science After all the subcomponents are evaluated, the CE component marks are consolidated to attain 60% Weightage: The Semester End Examination shall be a 90 minute theory paper of 50 marks with a weightage of 40% in case of theory courses. In summary, the ratio of Formative (Continuous Evaluation-CE) Vs Summative (Semester End Examination-SEE) should be 60:40. ## 27. Student Support for Learning - 1. Course Notes - 2. Reference Books in the Library - 3. Magazines and Journals - 4. Internet Facility - 5. Computing Facility - 6. Laboratory Facility - 7. Staff Support ## 28. Quality Control Measures - 1. Review of Course Notes - 2. Review of Question Papers and Assignment Questions - 3. Student Feedback - 4. Moderation of Assessed Work - 5. Opportunities for students to see their assessed work - 6. Review by external examiners and external examiners reports - 7. Staff Student Consultative Committee meetings - 8. Student exit feedback - 9. Subject Assessment Board (SAB) - 10. Programme Assessment Board (PAB) Od) Page 15 of 211 # 29. Curricular Map | | Course Title | P01 | PO2 | PO3 | P04 | PO5 | P06 | PO7 | PO8 | PO9 | PO10 PO | 11 PO12 | | | PSC | |---|--|-----|-----|-----|-----|-----|------|-----|-----|-----|---------|---------|----|---|-----| | 1 | Macromolecular structure and analysis | 3 | | 2 | | 1 | | 1 | | 1 | 1 | 1 | 3 | 2 | 1 | | 1 | Biological techniques and
Instrumentation | 3 | | 2 | | 2 | | 1 | | 1 | 1 | 1 | 3 | 2 | 1 | | 1 | Biomathematics and MATLAB | 3 | | 2 | | 2 | | 1 | | 1 | 1 | 1 | 3 | 2 | 1 | | 1 | Fundamentals in Biology | 3 | | | | 1 | | | | | | 1 | 2 | 1 | 1 | | 1 | English for Communication 1 | - | | | | | 3 | - | _ | | | 1 | - | - | 1 | | 1 | Digital Fluency | | | 3 | | | 1 | _ | | 1 | | 3 | | - | 3 | | 2 | General Chemistry 1 | 3 | | 2 | | 1 | ÷ | 1 | | 1 | 1 | 1 | 3 | 2 | 1 | | 2 | Principles of Microbiology | 3 | | 2 | | | - | 1 | | 1 | 1 | 1 | 3 | 2 | 1 | | 2 | Organic Mechanisms in Biology | 3 | | | | Ť | - | 1 | | 1 | 1 | - | 2 | 2 | 1 | | 2 | Biotechnology for Human Welfare | 3 | | | | İ | | | | | | 1 | 2 | 1 | 1 | | 2 | Environmental Studies | 3 | | | | 1 | | | | 2 | 3 | 1 | - | 1 | 1 | | 2 | Health and Wellness/ Social and
Emotional learning | | | | | | | 1 | | 1 | | 1 | | | 3 | | 3 | General Chemistry 2 | 3 | | 2 | | 1 | | 1 | | 1 | 1 | 1 | 3 | 2 | 1 | | 3 | Principles of Genetics | 3 | | 2 | | 1 | | 1 | | 1 | 1 | 1 | 3 | 2 | | | 3 | Biostatistics | 3 | | 1 | | 1 | | 1 | | 1 | 1 | 2 | 3 | 2 | - | | 3 | Applications of Biotechnology in
Agriculture | 3 | | Ė | | 1 | | | | | | 1 | 2 | 1 | 1 | | 3 | English for Communication 2 | | | | | | 3 | | | | | 1 | | | 1 | | 3 | AI | 3 | 1 | 1 | 1 | 3 | - | | | | | 3 | 3 | 3 | | | 3 | Innovation and Entrepreneurship | | 3 | - | | 3 | 3 | 3 | 3 | 3 | 3 3 | _ | - | 3 | 3 | | 4 | Cell Structure and Signalling | 3 | 0 | 2 | | 1 | J | 1 | J | 1 | 1 | 1 | 3 | 2 | - | | 4 | Molecular Biology | 3 | | 2 | | 1 | | 1 | - | 1 | 1 | _ | 3 | 2 | 1 | | 4 | Molecular genetics | 3 | | | | _ | - | 1 | | _ | | 1 1 | | | | | 4 | The state of s | _ | _ | _ | _ | 1 | - | 1 | | 1 | 1 | 1 | 3 | 2 | 1 | | | Applications of Biotechnology in Medicine | 3 | | | | 1 | | | | | | 1 | 2 | 1 | 1 | | 4 | Constitution of India and Human
Rights | | | | | | | | | 3 | | 1 | | | 3 | | 4 | Professional Communication | | | | | | 3 | | | | | 3 | | | 3 | | 4 | Ethics and self-awareness | | | | | | | 1 | | 3 | | 1 | | | 3 | | 5 | Recombinant DNA Technology | 3 | | 2 | | 1 | | 1 | | 1 | 1 | 1 | 3. | 2 | 1 | | 5 | Immunology and Immuno-
technology | 3 | | 2 | | 1 | | 1 | | 1 | 1 | 1 | 3 | 2 | | | 5 | Computer Programming; Python
and R | 3 | 1 | 3 | 3 | 3 | | | | | | 2 | 3 | 3 | 1 | | 5 | Environmental Biotechnology | 3 | | | | 1 | | 1 | | 1 | 1 | 1 | | 2 | 1 | | 5 | Agricultural Biotechnology | 3 | | | | 1 | | 1 | | 1 | 1 | 1 | 3 | 2 | 1 | | 5 | Medical Biotechnology | 3 | | | | 1 | | 1 | | 1 | | 1 | 3 | 2 | 1 | | 5 | Project Management | | | | | 3 | 2 | 3 | 3 | 3 | 3 1 | | Ť | _ | 3 | | 5 | Cyber security | | | | | | _ | | Ť | 3 | | 3 | | | 1 | | 5 | Sports/Yoga/NSS/Cultural | | | H | | | | 1 | | 1 | | 1 | | | | | 6 | Animal Biotechnology | 3 | | 2 | | 1 | - | 1 | | 1 | 1 | 1 | 3 | 2 | 1 | | 6 | Plant Biotechnology | 3 | _ | 2 | | 1 | | 1 | | 1 | 1 | 1 | 3 | 2 | 1 | | 6 | Biosafety, Bioethics and IPR | 3 | | - | | 3 | | | - | 3 | 3 | | _ | 3 | | | 6 | | | | | | _ | - 14 | 4 | - | _ | | 2 | 3 | _ | 1 | | _ | Industrial Biotechnology | 3 | | - | | 1 | - | 1 | - | 1 | 1 | 1 | 3 | 2 | 3 | | 6 | Pharmaceutical Biotechnology Personality Development and Soft Skills | 3 | | | | 1 | 2 | 1 | | 1 | 1 | 1 | 3 | 2 | 3 | | 6 | Competitive Exam Training | | | | | | | | | | | 10 | - | | - | | | | | | | _ | | - | | - | - | | 3 | | - | 3 | | | Seminar | _ | - | _ | | _ | | | | | 4 | 3 | | | 3 | | 7 | Bioinformatics | 3 | 1 | 3 | 1 | 3 | | 1 | | 1 | 1 | 2 | 3 | 2 | 2 | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Department of Biotechnology 13 Ramalah University of Applied Sciences Bangalore - 560 054 Page 16 of 211 Dean - Academics M. Remaish University of Applied Galance Bangalore - 560 054 | 7 | Genomics and Proteomics | 3 | | 2 | | 1 | | 1 | | 1 | 1 | 2 | 3 | 2 | 1 | |---|--|---|---|---|---|---|---|---|---|---|---|---|---|---|---| | 7 | Research Methodology | | 3 | 3 | 3 | 3 | 3 | | | | | 3 | | 3 | 3 | | 7 | Stem cells and Regenerative medicine | 3 | | | | 1 | | 1 | a | 1 | 1 | 1 | 3 | 2 | 1 | | 7 | Nanobiotechnology | 3 | | | | 1 | | 1 | | 1 | 1 | 1 | 3 | 2 | 3 | | 7 | Green Energy Technologies | 3 | | | | 1 | | 1 | | 1 | 1 | 1 | | | 3 | | 7 | Internship/Training/Project/Vocatio nal course | | 2 | | | 3 | | | 3 | 3 | 2 | 3 | | 3 | | | 8 | Research Project | | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 3 | | 3 | | 3 | 3 | ## 30. Co-curricular Activities
Students are encouraged to take part in co-curricular activities like seminars, conferences, symposia, paper writing, attending industry exhibitions, project competitions and related activities for enhancing their knowledge and networking. # 31. Cultural and Literary Activities Annual cultural festivals are held to showcase the creative talents in students. They are involved in planning and organizing the activities. ## 32. Sports and Athletics Students are encouraged to take part in sports and athletic events regularly. Annual sports meet will be held to demonstrate sportsmanship and competitive spirit. Page 17 of 211 Department of Bibliochtfology M S Ramaiah University of Applied Sciences Bangalore - 560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Dear 10 1 rics 1.S. Ramaiah University of Applied Sciences Angalote - 560 054 M. S. Ramaiah University of Applied Sciences Course Specifications of B.Sc. (Hons) in Biotechnology Programme Code: 018 BATCH 2024 onwards Department of Biotechnology Faculty of Life and Allied Health Sciences M S Ramaiah University of Applied Sciences Approved by the Academic Council at its 26th meeting held on 14th July 2022, Revised and Approved by the 28th and 31st Academic Council meeting held on the 3rd April 2023 and 22nd March 2024 respectively Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Department of Biblechnology Dean - Academics Dean - Academics M.S. Punaiah University of Applied Sciences Bangalore - 560 054 M. S. Ramaiah University of Applied Sciences **Course Specifications** of B.Sc. (Hons) in Biotechnology Programme Code: 018 **SEMESTER 1** Department of Biotechnology Faculty of Life and Allied Health Sciences M S Ramalah University of Applied Sciences Faculty of Life & Allied Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Shrukidalahur Department of Biotechnology M S Ramaiah University of Applied Sciences Bangalore - 560 054 Page 19 of 211 M.S. Ramaiah Throughy of Applied Sciences Bangalore - 560 054 | Course Title | Macromolecular Structure and Analysis | | |--------------|--|--| | Course Code | BTC101A | | | Department | Biotechnology | | | Faculty | Faculty of Life and Allied Health Sciences | | # 1. Course Summary The course aims to provide an advanced understanding of the core principles and topics of bio molecules and their roles in life. The laboratory component of the course aims to train students on estimation, characterization and analysis of bio molecules like protein, carbohydrate, lipid and nucleic acids. Students will be able to describe the structure and function of basic macromolecules in biological system like carbohydrate, protein, lipid and nucleic acid and explain functional complexity of them. Students will be trained to differentiate and characterize nucleic acids involved in gene expression. They will also be taught to categorize and relate the most important and active macromolecules of the biological system like enzymes and hormones. They will be able to establish the link between the complexities of these molecules at a chemical level with biological context. Students will be able to explain properties of various bio molecules found in living systems by performing experiments involving isolation, separation and characterization. Students will be trained to calculate, analyze and interpret the data to enter in laboratory record book. #### 2. Course Size and Credits: | Number of Credits | 5 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of laboratory Hours | 60 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | ## Teaching, Learning and Assessment ## 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. List the function of different macromolecules in biological system such as carbohydrate, protein, lipid and nucleic acid. - CO 2. Explain and illustrate the structural and functional complexity of macromolecules and their monomers with respect to their structure and functions. - CO 3. Examine the chemical nature of enzymes and their function in biochemical reactions and explain regulation of enzyme activity. - CO 4. Analyze the coordination between the bio molecules which maintain the biological functions such as gene expression. - CO 5. Perform experiments to analyze and study the chemical and biochemical properties of Sugars, nucleic acids, protein and enzymes. - CO 6. Separate bio molecules in a mixture following standard protocols. - CO 7. Calculate and plot the results and analyze data. Page 20 of 211 Academics University of Applied Sciences Bangalore - 560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024. Department of Bictechnology M S Rameie W. Mildestly of Applied Sciences Bangalore - 580 054 #### 4. Course Contents ## Theory Unit 1 Carbohydrates: Structural aspects – Introduction & Occurrence, Classification of Mono-, Di- and Polysaccharides, Reducing & Non-reducing Sugars, Constitution of Glucose & Fructose, Osazone formation, Pyranose & Furanose forms, Determination of ring size, Inter-conversion of monosaccharides Unit 2 Proteins: Structural aspects – General introduction, Classification & General characteristics, Structure of Primary, Secondary, Tertiary & Quaternary proteins (elementary idea), Classification of Amino acids Unit 3 Lipids: Structural aspects – General introduction, Classification & Structure of Simple & Compound lipids, Properties of Lipid aggregates, Biological membrane, Membrane protein – structural aspects, Lipoproteins Unit 4 Nucleic acid: Structural aspects – Components of DNA and RNA, Nucleosides & Nucleotides (introduction, structure & bonding), Double helical structure of DNA (Watson-Crick model), various forms of DNA Unit 5 Chemical & Enzymatic Kinetics: An introduction to enzyme; How enzyme works; Reaction rate; Principles of catalytic power and specificity of enzymes; Enzyme kinetics – Approach to mechanism; Thermodynamic definitions Unit 6 DNA as the genetic material: DNA replication is semi conservative, mutations change the sequence of DNA, a gene codes for a single polypeptide, recombination occurs by physical exchange of DNA, genetic code ## **Practical** - Estimation of protein by Folin Lowry method - 2. Separation of Amino acids by Paper chromatography - 3. Separation of Amino acids by TLC - 4. Separation of sugars by Paper chromatography /sugars - 5. Separation of sugars by TLC - 6. Estimation of total sugar by Anthrone method sugar - 7. Estimation of Reducing sugar by DNS method - 8. Determination of Km and V max of amylase - 9. Determination of lodine number of a fat - 10. Determination Acetyl number of a fat - 11. Estimation of RNA by Orcinol method - 12. Estimation of DNA by Diphenyl amine (DPA) method Page 21 of 21 # 5. CO-PO PSO Mapping: | | 臣 | P02 | ទួ | 5 | Ş | 8 | 72 | Š | 8 | PO 10 | 5 | P012 | PSO1 | PS02 | Ş | |------|---|-----|----|---|---|---|----|----|---|--------------|---|------|------|----------|---| | CO-1 | 3 | - | | | | | - | | | - | | - | 3 | 1 - | | | CO-2 | 3 | - | | | 1 | | - | - | - | - | | - | 3 | · | | | CO-3 | 3 | - | - | | 1 | - | - | | 1 | - | | | 3 | 1 - | | | CO-4 | 3 | - | - | | 1 | - | - | | | - | - | - | 3 | - | | | CO-5 | 3 | - | - | | | | | 72 | - | - | - | - | 3 | - | 1 | | CO-6 | 3 | - | 2 | - | 1 | - | 1 | 1 | - | 1 | - | 1 | 3 | † | 1 | | CO-7 | 3 | | 2 | - | | - | 1 | 1 | - | 1 | - | 1 | 3 | † | 1 | # 6. Course Teaching and Learning Methods: | eaching and Learning Methods | Duration in hours | Total Duration in
Hours | |---|-------------------|----------------------------| | Face to Face Lectures | | 36 | | Demonstrations | | | | Demonstration using Videos | 02 | 1 | | Demonstration using Physical Models | 01 | 03 | | Demonstration on a Computer | | | | Numeracy | <u>'</u> | | | Solving Numerical Problems | | Ī | | Practical Work | | | | 1. Course Laboratory | 56 | | | 2. Computer Laboratory | | | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | 56 | | 5. Hospital | | ĺ | | 6. Model Studio | | 1 | | Others : | | | | Case Study Presentation | | | | 2. Guest Lecture | | | | 3. Industry / Field Visit | | 1 | | 4. Brainstorming Sessions | | 8 | | 5. Group Discussions | 01 | 02 | | 6. Discussing Possible Innovations | 01 | | | emn Test and Written Examination | - | 04+04 | | otal Duration in Hours | | 105 | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S-Rametan University of Applied Sciences Panalists - 530 954 Page 22 of 211 Dean - Academics M.S. Ramash University of Applical Brief 78 Bangalore - 560 054 ## 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | ua vi cou | rse Learning Outcome | | | | | | |-----------|----------------------|-----------------------------------|-----------------------------------|-----------------|------------|--| | | | CE (60% Weightage |) | : | SEE | | | | | | | (40% V | Veightage) | | | | SC1 | SC2 | SC3 | SEE | SEE | | | | (Term Tests) 30% | (Innovative + Lab assignment) 10% |
(Written + Lab
Assignment) 20% | (Theory)
25% | (Lab) 15% | | | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | 30 Marks | | | CO-1 | X | X | | Х | | | | CO-2 | X | Х | | Х | | | | CO-3 | X | | X | Х | | | | CO-4 | | | Х | Х | | | | CO-5 | | Х | | | Х | | | CO-6 | | X | X | | X | | | CO-7 | | | Х | | Х | | ## 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | .No | Curriculum and Capabilities Skills | How imparted during the course | | |-----|------------------------------------|--------------------------------|--| | 1 | Knowledge | Classroom lectures | | | 2 | Understanding | Classroom lectures, self-study | | | 3 | Critical Skills | Assignment | | | 4 | Analytical Skills | Assignment | | | 5 | Problem Solving Skills | Assignment, Examination | | | 6 | Practical Skills | Assignment, Examination | | | .7 | Group Work | g | | | 8 | Self-Learning | Self-study | | | 9 | Written Communication Skills | Assignment, examination | | | 10 | Verbal Communication Skills | 40 | | | 11 | Presentation Skills | | | | 12 | Behavioral Skills | - | | | 13 | Information Management | Assignment | | | 14 | Personal Management | - | | | 15. | Leadership Skills | - | | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Shout Maleur Department of Biotechnology Bangalore - 560 054 M S Ramaiah University of Applied Sciences Dean - Acade mos, M.S. Ramaiah University of Applied Sciences #### 9. Course Resources ## a. Essential Reading - 1. Nelson, D. L., Cox, M. M., 2008, Lehninger principles of biochemistry. 7th Edition, W.H. Freeman. - 2. Jain, J.L., Jain, S., Jain, N., 2016, Fundamentals of Biochemistry, S. Chand and Company. - 3. Das D., 2014, Biochemistry, Academic publishers. - Satyanarayana, U., 2013, Biochemistry, Elsevier, India. - 5. Fernandez, G., Scott, T.P., 2015, Biochemistry Laboratory Manual For Undergraduates: An Inquiry-Based Approach, Open Access, De Gruyter. - 6. Pandey, A.S., Shreevastva, N.K., Neupane, D.P., Pandey, A., 2015, Biochemistry Laboratory Manual 1st Edition, Jaypee Brothers Medical Publishers. # b. Recommended Reading - 1. Voet, D., Voet, J.G., 2011, Biochemistry, 4th Edition, John Wiley & Sons. - 2. Boyer, R.F., 2011, Biochemistry Laboratory: Modern Theory and Techniques, Pearson Publisher. - 3. Berg J.M., Tymoczko J.L., Stryer L., 2011, Biochemistry, 7th revised international Edition, W.H. Freeman. - 4. Zubay, G., 1997, Principles of Biochemistry, 4th Edition, Brown (William C.) Co., U.S. Faculty of Life & Allied Health Sciences M.S. RAMAIAH UNIVERSITIES THE MARCH 2024 Final Approval by the Academic Council in its 31st meeting held on 22st March 2024 Final Approval by the Academic Council in its 31st meeting held on 22st March 2024 Final Approval Department of Biotechnology M S Ramean Smivere: Villaging Selences E-perlore - 560 054 Bangalore - 560 054 | Course Title | Biological techniques and Instrumentation | |--------------|---| | Course Code | BTC102A | | Department | Biotechnology | | Faculty | Life and Allied Health Sciences | ## 1. Course Summary The aim of the course is to orient students on the mode of different types of instrumentation that is important for studies of biological macromolecules, cells and other molecules. The course summarizes the description of components that the instrumentation consists of as well as a theoretical and practical understanding of the operation of the instrument, including calibration procedures and maintenance. Students will be able to distinguish between the principles and objectives of techniques like chromatography, electrophoresis, centrifugation, microscopy, spectroscopy etc. Students will be taught to describe and interpret data of each instrument with examples of high-quality recent research data. The course aims to train students on calibration and optimization methods of General laboratory instrumentation in Biotechnology lab and their application. Students will be oriented on principles and operation of general laboratory instrumentation used in Biotechnology lab. The students will also be able to calibrate, operate and interpret data obtained from the experiments involving the core laboratory instrumentation. #### 2. Course Size and Credits: | Number of Credits | 05 | | |---------------------------------------|-------------------------------|--| | Total Hours of Classroom, Interaction | 45 | | | Number of laboratory Hours | 60 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | Total Marks: 100 | | | Pass Requirement | As per University regulations | | | Attendance Requirement | As per University regulations | | ## Teaching, Learning and Assessment ## 3. Course Outcomes (COs) After undergoing this course students will be able to: - CO 1. List of various biophysical techniques and define common terms in biophysical - CO2. Explain the basic concepts and principles behind these techniques and description of different sub-types of each technique - CO 3. Illustrate the instrumentation of each technique and understand the role of different parts of an instrument - CO 4. Analyze the results obtained from these techniques and thus interpret its applications - CO 5. Derive formulae and solve numerical problems in biophysical techniques - CO 6. Calibrate and optimize the basic and analytical instruments in biotechnology lab - CO 7. Perform experiments using these instruments, observe, analyze, interpret and report the data. Shilowala Department of Biotechnology M S Ramaiah University of Applied Sciences Dean - Ac M.S. Ramaiah Univesit Bangalore - 560 054 #### 4. Course Contents ## Theory Unit 1 Introduction to Biophysics – What is biophysics and its branches, Quantum theory of light, wave theory of light, Photo electric effect, de Broglie wave equation, wave function, atomic models. Unit 2 Separation & Identification of Biomolecules – concept of Chromatography and different types (Partition Chromatography, Paper Chromatography, Adsorption Chromatography, TLC, GLC, Ion Exchange Chromatography, Gel Chromatography, HPLC, Affinity Chromatography); Electrophoresis. Unit 3 Centrifugation — Basic Principle of Centrifugation, Instrumentation of Ultracentrifuge (Preparative, Analytical), Factors affecting Sedimentation velocity, Standard Sedimentation Coefficient, Centrifugation of associating systems, Rate-Zonal centrifugation, Equilibrium Centrifugation. Unit 4 Microscopy - Light microscopy, Bright & Dark Field microscopy, Phase Contrast microscopy, Fluorescence microscopy, TEM, SEM. Unit 5 Spectroscopy – Absorption Spectroscopy – Simple theory of the absorption of light by molecules, Beer-Lambert law, Spectrophotometry (UV-visible), Colorimetry, Chromophores, Fluorescence and Phosphorescence. Unit 6 Raman Spectroscopy – The Raman effect, Advantages and applications of Raman spectroscopy, IR spectroscopy, NMR Spectroscopy – Basic principle, advancements and applications of NMR spectroscopy. Mass spectrometry (MS) – Basic principle, Instrumentation. X-Ray Crystallography – Introduction and principles of X-ray diffraction. #### **Practical** - Microscopy Light microscopy and dissection microscopy: principles, parts & function, operation. - 2. Fluorescent microscope Principles, parts & function, Operation. - 3. Microscopic measurements, micrometer (ocular and stage). - 4. Microscopic counting of cells using a hemocytometer. - Principle & operation of Colorimeter. - 6. Principle & operation of UV-Visible spectrophotometer. - 7. Principle & operation of pH meter. - 8. Principle & operation of centrifuge. - Sterilization: principles & operations Autoclave. - Principle & operation of Laminar Airflow hood. - Principles & operations Hot Air Oven, Filtration. - 12. Principles & operations of Incubators & Shakers. Page 26 of 211 Dean - Academics M.S. Ramaiah University of Applied Sciences Rangalore - 560 054 # 5. CO-PO PSO Mapping: | | δ | P 02 | S | 9 | 50 | 8 | PO7 | S
S | P09 | PO10 | P04 | P012 | PSO1 | PS02 | PSO3 | |-----|---|-------------|---|-----|----|-----|-----|--------|-----|------|-----|------|------|------|------| | CO1 | 3 | - | - | - | ١. | - | - | | - | - | - | - | 3 | 1.0 | 10 | | CO2 | 3 | - | 1 | 1 | 1 | - | T | 1 - | 1 - | 2 | | 1 - | 3 | | 15 | | CO3 | 3 | - | 1 | 1 - | 1 | | | | 1 - | 2 | | | 3 | | - 30 | | CO4 | 3 | - | 1 | 2 | 1 | ŀ | 1 - | 1 - | 1 - | 2 | 1 | - | 3 | | | | CO5 | 3 | - | 1 | 2 | 1 | - | | 1 | - | 2 | 121 | - | 3 | - | (6 | | COS | 3 | - | 2 | - | - | 1 - | 1 - | - | - | 3 | 1 | 1 - | 3 | 2 | | | CO7 | 3 | - | 2 | 2 | ١. | 1 - | 1 - | ١. | 1 - | 3 | T - | - | 3 | | | ## 6. Course Teaching and Learning Methods: | Teaching and Learning Methods | Duration in hours | Total Duration in Hours | |---|-------------------|-------------------------| | Face to Face Lectures | | 36 | | Demonstrations | | | | Demonstration using Videos | 02 | 0 | | 2. Demonstration using Physical Models | 01 | 3 | | 3. Demonstration on a Computer | | | | Numeracy | | 0 | | Solving Numerical Problems | 2 | | | Practical Work | | | | 1. Course Laboratory | 56 | 1 | | 2. Computer Laboratory | | _ | | 3. Engineering Workshop / Course/Workshop / Kitchen | | 5
6 | | 4. Clinical Laboratory | | 1 | | 5. Hospital | | | | 6. Model Studio | | | | Others | | | | Case Study Presentation | | li . | | 2. Guest Lecture | | | | 3. Industry / Field Visit | | | | 4. Brainstorming Sessions | | | | 5. Group Discussions | |] | | Discussing Possible Innovations | | | | erm Test and Written Examination | | 04+04 | | otal Duration in Hours | | 105 | ## 7. Method of Assessment The components and subcomponents of course assessment is presented in the Academic Regulations document pertaining to the Programme. The procedure to Final Approval by the Academic Council in its 31st meeting held on
22std March 2024 M S Ramalah University of Applied Sciences Bangalore - 560 054 Page 27 of 211 Dean - Aca Applied Sciences M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | Focus of Co | ourse Learning Outcome | s in each component | assessed | | | |------|-------------------------|--|---|------------------------|------------------|--| | | | SEE
(40% Weightage) | | | | | | | SC1
(Term Tests) 30% | SC2
(Innovative + Lab
assignment)
10% | SC3
(Written + Lab
Assignment)
20% | SEE
(Theory)
25% | SEE
(Lab) 15% | | | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | 30 Marks | | | CO-1 | Х | X | - | Х | | | | CO-2 | Х | Х | | X | | | | CO-3 | X | | | Х | | | | CO-4 | X | - Ta | X | X | | | | CO-5 | | | X | Х | | | | CO-6 | | X | X | | Х | | | CO-7 | | | X | | Х | | ## 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S. No | Curriculum and Capabilities Skills | How imparted during the course | |-------|------------------------------------|--------------------------------| | 1. | Knowledge | Classroom lectures | | 2. | Understanding | Classroom lectures, self-study | | 3. | Critical Skills | Assignment | | 4. | Analytical Skills | Assignment | | 5. | Problem Solving Skills | Assignment, Examination | | 6. | Practical Skills | Assignment | | 7. | Group Work | | | .8. | Self-Learning | Self-study | | 9. | Written Communication Skills | Assignment, examination | | 10. | Verbal Communication Skills | 4- | | 11. | Presentation Skills | | | 12. | Behavioral Skills | | | 13. | Information Management | Assignment | | 14. | Personal Management | 14 | | 15. | Leadership Skills | | # 9. Course Resources - a. Essential Reading - 1. Nelson, P., 2013, Biological Physics, Updated Edition, W. H. Freeman. - 2. Bialek, W., 2012, Biophysics: Searching for Principles, Princeton University Press. Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Department of Biothorhology M S Ramaiah University of Applied Sciences Bangalore - 560 054 Page 28 of 211 Second Academics M.S. Rama on University of Applied Sciences Bangalore - 560 054 - 3. Glaser, R., 2012, Biophysics: An Introduction, 2nd Edition, Springer. - 4. Narayanan, P., 2016, Essentials of Biophysics, New Age International, New Delhi, India. - 5. Kumar, P., 2010, Introduction to Biophysics, S. Chand and Company, India. - 6. Cantor, C.R., Schimmel, P.R., 1980, *Biophysical Chemistry Part I, Part II and Part III*, W.H. Freeman. - 7. Roy, R.N., 2001, A Textbook of Biophysics: For Medical Science and Biological Science Students, New Central Book Agency Pvt. Ltd, New Delhi, India. - 8. Kumar, P., 2016, Fundamentals and Techniques of Biophysics and Molecular Biology, Pathfinder Publication, India. - 9. Kumaresan, V., 2012, Principles and Techniques in Biophysics, Saras Publication, India. - Laboratory manual. - 11. Wilson, K., (ed.), Walker, J., (ed.) 2010, *Principles and Techniques of Biochemistry and Molecular Biology*, 7th edition, Cambridge University Press. - 12. Hofmann, A., (ed.), Clokie, S., (ed.), 2018, Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology, 8th edition, Cambridge University Press. - 13. Fernandez, G., Scott, T.P., 2015, Biochemistry Laboratory Manual For Undergraduates: An Inquiry-Based Approach, Open Access, De Gruyter. - 14. Pandey, A.S., Shreevastva, N.K., Neupane, D.P., Pandey, A., 2015, *Biochemistry Laboratory Manual 1st Edition*, Jaypee Brothers Medical Publishers ## b. Recommended Reading - 1. Daniel, M., 2003, Basic Biophysics for Biologists, Agrobios, Jodhpur, India. - Okotore, R.O., 1998, Basic separation techniques in Biochemistry, New Age International, India. - 3. Sharma, R.K., 2010, Basic techniques in Biochemistry and Molecular Biology, I.K. International Publishing house Pvt. Ltd, Delhi, India. - 4. Claycomb, J., 2011, Introductory Biophysics: Perspectives on the Living State. Jones & Bartlett. - 5. Cotterill, R., 2014, Biophysics An Introduction, Wiley. - 6. Phyllips, R., Kondev, J., Theriot, J., Garcia, H., 2012, *Physical Biology of the Cell*, 2nd Edition, Garland Science. - 7. Jackson, M.B., 2006, Molecular and cellular Biophysics, Cambridge University Press, UK. - 8. Boyer, R.F., 2011, *Biochemistry Laboratory: Modern Theory and Techniques,* Pearson Publisher. ## c. Magazines and Journals 1. http://www.cell.com/biophysi/homewww.journals.elsevier.com/biophysical-journal/ #### d. Websites - 1. https://www.biophysics.org - 2. http://www.biophysics.org/education-careers/education-resources/selected-topics-in-biophysics/biophysical-techniques - https://www.nature.com/subjects/biophysical-methods ### e. Other Electronic Resources https://www.biophysics.org/what-is-biophysics Page 29 of 21 Dean - Applied Sciences M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 Final Approval by the Academic Council in its 31st meeting held on 22st March 2024 M S Ramalah University of Applied Sciences Bangelore - 550 054 | Course Title | Biomathematics and MATLAB | | |--------------|--|--| | Course Code | BTC103A | | | Department | Biotechnology | | | Faculty | Faculty of Life and Allied Health Sciences | | ## 1. Course Summary The aim of the course is to provide an understanding of basic mathematics and its applications in biotechnology. The course introduces students to the basic concepts and techniques in trigonometry and analytical geometry. Students are taught the concepts of derivative, continuity, limits, functions and integral calculus. This course introduces the students to the basic concepts of linear algebra, vector calculus and its applications in biotechnology. This course also introduces the students to the basics of programming using MATLAB. ## 2. Course Size and Credits: | Number of Credits | 3 | |--------------------------------------|-----------------------------------| | Total Hours of Classroom Interaction | 25 | | Number of laboratory Hours | 20 | | Number of Semester Weeks | 16 | | Department Responsible | Mathematics and Statistics (FMPS) | | Course Marks | Total Marks: 100 | | Pass Requirement | As per university regulations | | Attendance Requirement | As per university regulations | ## Teaching, Learning and Assessment ## 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Explain the principles of trigonometry, differential, integral calculus, linear algebra and vector calculus - CO 2. Solve simple problems associated with trigonometry, differential, integral calculus, linear algebra and vector calculus - CO 3. Apply the appropriate methods from trigonometry, differential, Integral calculus, linear algebra and vector calculus in solving application problems of biotechnology - CO 4. Solve real world mathematical problems associated with trigonometry, differential, Integral calculus, linear algebra and vector calculus - CO 5. Perform basic operations and plot graphs using built-in commands in MATLAB - CO 6. Implement algorithms and execute programs and solve simple mathematical problems using MATLAB Page 30 of 211 Dean - Academics Dean - Academics M.S. Ramaish University of Applical Sciences Rangalore - 556 634 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 #### 4. Course Contents **Unit 1 Differential Calculus**: limit, continuity and derivatives of standard functions. Rules of differentiation applications in Population Biology and enzyme kinetics. **Unit 2 integral Calculus:** Indefinite integrals of standard functions, definite integrals and their properties, Fundamental Theorem of Integral Calculus. Different methods of integration and applications in Biology. **Unit 3 Linear Algebra**: Introduction to matrices: Types, Operation, Transpose of a matrix, Matrix Multiplication, Determinants, Properties of determinants, Product of determinants, Minors and co- Factors, Adjoint or adjugate of a square matrix, Singular and non-singular matrices, Inverse of a matrix, Solution of system of linear of equations using matrix method, Cramer's rule, Characteristic equation and roots of a square matrix, Cayley–Hamilton theorem and applications. Linear algebra in Population Genetics **Unit 4 Vector Calculus**: Vectors in 2 and 3 dimensions. Dot product and cross product. Lines and planes in 3 dimensions. Vector functions - limit, continuity and differentiability of vector functions. Curves - velocity and acceleration, arc length, curvature, radius of curvature and torsion. Gradient of a scalar field, directional derivatives, curl and divergence of a vector field. Derivatives in determining the rate of muscle concentration, the rate of dissolution of drugs in blood stream and the growth rate of bacteria. ### **MATLAB** - Basic arithmetic operations in MATLB - Matrix operations in MATLB - 3. 2D and 3D plots - 4. Symbolic computations: Differentiation and integration - 5. Scripts and functions - Relational and logical operators - 7. Looping and Control structures in MATLAB, - 8. Row Operations and echelon form - Solution of Linear system of equations - Iterative Methods for linear systems: Gauss Jacobi and Gauss Seidel Page 31 of 211 Dean Marinics M.S. Ramaiah Universitylof Applied Sciences # 5. CO-PO PSO Mapping: | <u>P</u> | P02 | <u>8</u> | PQ | 9 05 | 90 | P07 | PO8 | PO9 | PO10 | P011
| PO12 | PSO1 | PS02 | PSO3 | |----------|-----|----------|------------------|------------------------|---------------------------------|-----------------------------------|---------------------------------|---|--|---------------------------------|-------------|------|-----------------|------| | × | | 3 | - | | 1 | · | | 1 | - | - | - | 200 | | | | 3 | - | 3 | - | | 1 | - | - | 2 | | - | - | | | | | • | - | 3 | 1 | - | 3 * 3 | - | - | 1 | - | - | - | 17. | | 100 | | 2 | - | - | 3 | - | œ | - | - | - | - | - | - | 3 | | | | 2 | ٠ | - | 3 | | (tak | - | _ | - | - | - | - | 3 | | | | - | | 3 | 3 | - | S#2 | - | - | - | | | - | 3 | | | | | 2 | 2 - | 3
3
3
3 | - 3 - 3 3 1
2 - 3 2 | 3 - 3 3 3 - 2 - 3 - 3 - 3 - 3 - | 3 1 1
2 - 3 1
2 - 3 - 3 - 3 | 3 1 - 1 - 2 - 3 1 - 2 - 3 - 3 3 | - 3 · 1 · · · · · · · · · · · · · · · · · | - 3 - 1 - 1
- 3 - 1 - 2
- 3 1 1
2 - 3 1 | - 3 - 1 - 1 - 1 - 2 3 1 1 - 1 2 | - 3 - 1 - 1 | | - 3 - 1 - 1 3 3 | | # 6. Course Teaching and Learning Methods | Teaching and Learning Methods | Duration in hours | Total Duration in Hours | |---|-------------------|-------------------------| | Face to Face Lectures | 21 | | | Demonstrations | | | | Demonstration using Videos | | 5 | | Demonstration using Physical Models / | | 9 | | 3. Demonstration on a Computer | 5 🖽 | 1 | | Numeracy | | | | Solving Numerical Problems | | 1 | | Practical Work | | | | 1. Course Laboratory | 1 | | | 2. Computer Laboratory | 1 | | | 3. Engineering Workshop / Course/Workshop / Kitchen | 15 | | | 4. Clinical Laboratory | | 1 | | 5. Hospital | | | | 6. Model Studio | | 1 | | Others | ' | | | Case Study Presentation | | 1 | | 2. Guest Lecture | | 1 | | 3. Industry / Field Visit | | 0 | | 4. Brainstorming Sessions | | 1 | | 5. Group Discussions | | 1 | | Discussing Possible Innovations | | 1 | | erm Test and Written Examination | = % | 4 | | otal Duration in Hours | | 45 | Page 32 of 211 mics Coan - No 211 mics M.S. University of Applied Science Bangalore - 560 USA #### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | CE (60% | | | | |------|-----------------------|---------------------------|---------------------------|------------------------| | | SC1
Term Tests30 % | SC2
Assignments
10% | SC3
Assignments
20% | SEE (40%
Weightage) | | | 25 + 25
Marks | 10 Marks | 40 Marks | 50 Marks | | CO-1 | Х | Х | | Х | | CO-2 | X | Х | | Х | | CO-3 | X | | Х | Х | | CO-4 | Х | | Х | Х | | CO-5 | | | X | Х | | CO-6 | | | X | Х | The Course Leader assigned to the course, in consultation with the Head of the Department, shall provide the focus of course outcomes in each component assessed in the above template at the beginning of the semester. Course reassessment policies are also presented in the Academic Regulations document. ## 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | . No | Curriculum and Capabilities Skills | How imparted during the course | |------|------------------------------------|--------------------------------| | 1. | Knowledge | Classroom lectures | | 2. | Understanding | Classroom lectures, self-study | | 3. | Critical Skills | Assignment | | 4. | Analytical Skilis | Assignment | | 5. | Problem Solving Skills | Assignment, Examination | | 6. | Practical Skills | Assignment | | 7. | Group Work | | | 8. | Self-Learning | Self-study | | 9. | Written Communication Skills | Assignment, examination | | 10. | Verbal Communication Skills | | | 11. | Presentation Skills | | | 12. | Behavioral Skills | | | 13. | Information Management | Assignment | | 14. | Personal Management | | | 15. | Leadership Skills | - | Page 33 of 211 M S Ramaiah University of Applied Sciences Bangalore - 560 054 Final Approval by the Academic Council in its 31st meeting held on 22™ March 2024 Dean - Casemics M.S. Ramaiah University of Applied Sciences #### 9. Course Resources ## a. Essential Reading - 1. Stewart, J., 2015, Calculus: Early Transcendentals, 8th Edition, Boston, Cengage Learning. - 2. Weir, M.D., Hass, J., 2017, Thomas Calculus, 13th Edition, New Jersey, Pearson. ## b. Recommended Reading - Apostal, T.M., 2007, Calculus: One-Variable Calculus with An Introduction to Linear Algebra, Vol. 1, 2ndEdition, New Delhi, Wiley. - Apostal, T.M., 2007, Calculus: Multi-Variable Calculus and Linear Algebra with Applications to Differential Equations and Probability, Vol. 2, 2ndEdition, New Delhi, Wiley. - 3. Spivak, M., 2006, Calculus, 3rd Edition, Cambridge, Cambridge University Press ## c. Magazines and Journals - http://rsos.royalsocietypublishing.org/collection/biomathematics - 2. Letters in Biomathematics: https://doaj.org/toc/2373-7867 #### d. Websites - 1. http://nptel.ac.in/ - 2. https://ocw.mit.edu/index.htm #### e. Other Electronic Resources - 1. https://www.khanacademy.org/ - 2. tutorial.math.lamar.edu/ Faculty of Life Stilled Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Department of Biotechnology 1 S Raffie for Library 1 Sciences Bangalore - 560 054 Page 34 of 211 Dean - Abademics Dean - Abademics M.S. Rameich University of Applied Science Bangalore - 560 054 | Course Title | Fundamentals of Biology | | |--------------|--|--| | Course Code | BTO101A | | | Department | Biotechnology | | | Faculty | Faculty of Life and Allied Health Sciences | | ## 1. Course Summary The aim of this course is to introduce the students to the major themes in biology. Students will explore the fundamentals of evolution, the flow of information, the correlation of structure and function, the exchange of energy and matter, and the interactions and interconnections in the biological system. Students will be able to emphasize on the connections of biology to their lives, and apply their knowledge though scientific inquiries on the nature of science and basic processes governing biological systems. #### 2. Course Size and Credits: | Number of Credits | 3 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of laboratory Hours | 0 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | Total Marks: 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | ## Teaching, Learning and Assessment ## 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Explain basic chemistry and the molecules of life through cellular structures to cellular respiration and photosynthesis. - CO 2. Identify the relationship between DNA, chromosomes, cells and organisms. - CO 3. Analyse the principles of evolution and its relevance in all fields of biology. - CO 4. Explore biological diversity in prokaryotes and eukaryotes. - CO 5. Assess the fundamental principles of ecology and apply their principles on solving environmental problems #### 4. Course Contents **Unit 1 Life of the cell:** Chemical basis of life- ionic bonds, covalent bonds, hydrogen bonds, role of water in reactions. Molecules of life- carbohydrates, proteins, fats **Unit 2 Introduction to cell-** Basic principles of Microscopy, structure and function of cell and cell organelles, Cellular basis of reproduction- Cell cycle, mitosis, meiosis **Unit 3 Genetic Information flow:** Structure of genetic material- nucleic acids. Flow of information-central dogma Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramaish University of Applied Sciences Bangalore - 580 054 Page 35 of 211 Dean Academics M.S. Ramaian University of Applied Sciences **Unit 4 Life and Evolution:** Theories of Origin of Life, Concepts of evolution: Darwin's theoryof evolution, Microevolution. Species and mechanism of speciation. **Unit 5 Biological diversity:** Microbial life- Prokaryotes and protists, Plant, fungal and animal diversity, Structure and function of plant and animal tissues **Unit 6 Ecology:** Biosphere: Aquatic and terrestrial biomes, Behavioral Adaptations to the Environment Communities and Ecosystems, Conservation Biology # 5. CO-PO PSO Mapping: | | P04 | P02 | ğ | <u>§</u> | PO5 | 90g | P07 | Š. | P09 | PO10 | <u>8</u> | P012 | PSO1 | PS02 | PS03 | |------|-----|-----|---|----------|-----|-----|-----|-----|-----|------|----------|------|------|------|------| | CO-1 | 3 | - | - | | 1 | | 88 | 1 | - | * | - | | 2 | - | 1 | | CO-2 | 3 | - | - | | 1 | - 1 | 3 | 1 | - | | - 1 | 3.0 | 2 | - | 1 | | CO-3 | 3 | - 1 | - | • | 1 | - | | . 1 | | • | - 1 | :•: | 2 | - | 1 | | CO-4 | 3 | - | - | | 2 | - | 820 | 1 | 1 | 3 | - | 2.5 | 2 | - | 1 | | CO-5 | 3 | - | - | 3 | 2 | 1 | - | 1 | 1 | 3 | - | - | 2 | | 1 | Faculty of Life & Ailed Health Sciences Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Fload Fl Page 36 of 211 Dean - Academics M.S.U. adiabit University of Applied Sciences Bangalore - 560 054 # 6. Course Teaching and Learning Methods: | Teaching and Learning Methods | Total Duration in Hours | | |--|-------------------------|----| | Face to Face Lectures | | 36 | | Demonstrations . | | | |
Demonstration using Videos | 03 | 03 | | Demonstration using Physical Models / Systems | 01 | | | 3. Demonstration on a Computer | | | | Numeracy | | | | 1. Solving Numerical Problems | | | | Practical Work | | | | 1. Course Laboratory | 2 | | | 2. Computer Laboratory | 0 | | | 3. Engineering Workshop / Course/Workshop / Kitchen | 1 | Ů | | 4. Clinical Laboratory | | | | 5. Hospital | | | | 6. Model Studio | 1 | | | Others | | | | 1. Case Study Presentation | 01 | 02 | | 2. Guest Lecture , | 02 | | | 3. Industry / Field Visit | 01 | | | 4. Brainstorming Sessions * | | | | 5. Group Discussions | 02 | | | 6. Discussing Possible Innovations | | | | Term Tests, Laboratory Examination/Written Examination, Presenta | itions | 04 | | Total Duration in Hours | | 45 | ### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the program. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | CE (60% | | ATT (140) | | |------|-----------------------|-----------------------|-----------------------|------------------------| | | SC1
Term Tests30 % | SC2
Assignments10% | SC3
Assignments20% | SEE (40%
Weightage) | | | 25 + 25
Marks | 10 Marks | 40
Marks | 50 Marks | | :0-1 | Х | Х | | Х | | 00-2 | х | Х | | Х | | 20-3 | х | Х | X | Х | Final Approval by the Academic Council in its 31st meeting held on 22rd March 2024 Approval by the Academic Courts. Shute Mallau M S Ramaiah University of Applied Sciences M.S. Ramaiah Univestor of Applied Sciences | CO-4 | Х | X | X | |------|---|---|---| | CO-5 | | X | X | The Course Leader assigned to the course, in consultation with the Head of the Department, shall provide the focus of course outcomes in each component assessed in the above template at the beginning of the semester. Course reassessment policies are also presented in the Academic Regulations document. ## 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | How imparted during the course | |------|------------------------------------|--| | 1 | Knowledge | Class room lectures, Assignments | | 2 | Understanding | Class room lectures, Assignments | | 3 | Critical Skills | Class room lectures, Assignments | | 4 | Analytical Skills | Class room lectures, Assignments | | 5 | Problem Solving Skills | | | 6 | Practical Skills | | | 7 | Group Work | Assignment/ Class Presentations | | 8 | Self-Learning | Assignment, Examination | | 9 | Written Communication Skills | Assignment | | 10 | Verbal Communication Skills | Class Presentations | | 11 | Presentation Skills | Class Presentations | | 12 | Behavioral Skills | | | 13 | Information Management | Assignment | | 14 | Personal Management | Assignment, Examination | | 15 | Leadership Skills | Effective management of learning, time management, achieving the learning outcomes | ## 9. Course Resources ## a. Essential Reading - 1. Course Notes - 2. Campbell Biology: Concepts and connections, Pearson, 9th edition - 3. Concepts of Biology by Samantha Fowler, Rebecca Roush, James Wise Final Approval by the Academic Council in its 31st meeting held on 22rd March 2024 Department of Biotechtology N 5 Ramaich University of Applied Sciences | Course Title | English for Communication 1 | |--------------|---| | Course Code | TSM101A | | Course Type | Ability Enhancement Compulsory Course | | Department | Directorate of Transferable Skills and Leadership Development | | Faculty | FLAHS/FMC/FMPS/FAD/SSS | ## 1. Course Summary The course aims at equipping the students with skills essential for effective communication in terms of speaking, writing and comprehension. The course gives practical exposure to the students by equipping them to use appropriate body language and tone for conversation. It focusses on comprehension of words and building of the wordrepertoire for meaningful communication. Students are instructed on the ways to construct grammatically correct sentences and compose paragraphs and essays. #### 2. Course Size and Credits: | Number of Credits | 03 | | |---|--|--| | Credit Structure (Lecture: Tutorial: Practical) | 3:0:0 | | | Total Hours of Interaction | 45 | | | Number of Weeks in a Semester | 15 | | | Department Responsible | Directorate of Transferable Skills and | | | Department Responsible | Leadership Development | | | Total Course Marks | 100 | | | Pass Criterion | As per the Academic Regulations | | | Attendance Requirement | As per the Academic Regulations | | ## 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Identify the nuances of communication skills - CO 2. Apply the concepts of grammar in written communication - CO 3. Apply professional etiquette as appropriate - CO 4. Practice extempore and basic conversation skills - CO 5. Practice comprehension skills - CO 6. Compose precise paragraphs as per the given topic ## 4. Course Contents ### Unit 1 (Communication Skills) Process of communication, terminologies used in communication process, active listening, communication barriers, types of communication – verbal and non-verbal ## Unit 2 (Grammer) Sentence formation, sentence types, different parts of speech, adjectives and articles, verbs and preposition, present and past tense, future tense, use of participles in different tenses, usage of tenses, rules of subject verb agreement # Unit 3 (Essentials of Speaking Skills) Importance of spoken skills, appropriate use of language, appropriate use of tone, pitch and volume Page 39 of 211 Dean - Acapa (1994) M.S. Ramaiah University of third Science # Unit 4 (Extempore) Preparation for extempore, mind mapping for speaking readiness, Content of extempore – beginning, body and conclusion, Delivery of extempore – body language and paralanguage ## Unit 5 (Conversation Skills) Body language in conversation, tones in conversation, conversation manners, stages of conversation – Introduction, feed forward, close, order of introduction, conversation barriers ## Unit 6 (Reading and the Techniques) Skimming, scanning and reading in detail # Unit 7 (Paragraph Writing) Structure of paragraph – topic sentence, supporting sentence, conclusion sentence, functions of paragraph, paragraph patterns, paragraph writing principles – coherence, unity, order, length ## Unit 8 (Comprehension) Purpose of comprehension, low-level comprehension, high-level comprehension ## Unit 9 (Précis Writing) Paraphrasing techniques, Usage of appropriate words # Unit 10 (Professional Etiquette and Goal Setting) Etiquette and its importance, types of etiquette – workplace, meeting, telephone, dining, norms of etiquette, goals, types of goal, setting SMART goal ## 5. CO-PO PSO Mapping: | | Programme Outcome(POs) | | | | | | | Programme
Specific | | е | | | | | | |------|-------------------------|------|---|------|------|------|------|-----------------------|-----------|-------|-------|-------|-------|-------|-------| | | P0-1 | P0-2 | 8 | PO-4 | PO-5 | PO-6 | PO-7 | 8-0-8 | 9.
6.0 | PO-10 | PO-11 | PO-12 | PS0-1 | PS0-2 | PSO-3 | | CO-1 | - | - | - | - | | | -3 | (*) | 2 | | - | - | - | - | 2 | | CO-2 | | | - | - | | 12 | - | (2) | 2 | • | - 1 | - | - | - | 2 | | CO-3 | - | - | - | - | - | • | - | | 2 | | - | - | 8 - | | 2 | | CO-4 | - | - | - | - | - | 3 | - | • | 2 | | | | - | - | 2 | | CO-5 | - | | - | | | | - | 3.0 | 2 | | - | - | - | - | 2 | | CO-6 | - | - | - | | - | | - | :*: | 2 | | - 1 | 1 | - | - | 2 | Page 40 of 211 cs Dean University of Application of Research Applicatio Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramsiah University of Applied Sciences # 6. Course Teaching and Learning Methods: | Teaching and Learning Methods | Total Durationin Hours | | |---|------------------------|----| | Face to Face Lectures | 15 | | | Demonstrations | | | | 1.Demonstration using Videos | 02 | 02 | | Demonstration using Physical Models / Systems | | | | 3. Demonstration on a Computer | 00 | | | Numeracy | 10. | 0 | | 1. Solving Numerical Problems | 00 | | | Practical Work | | | | 1. Course Laboratory | 00 | | | 2. Computer Laboratory | 00 | | | 3. Engineering Workshop / Course/Workshop / Kitchen | 04 | 04 | | 4. Clinical Laboratory | 00 | | | 5. Hospital | 90 | | | 6. Model Studio | 00 | | | Others | | | | 1. Case Study Presentation | 04 | | | 2. Guest Lecture | 02 | 14 | | 3. Industry / Field Visit | 00 | T | | 4. Brainstorming Sessions | 04 | | | 5. Group Discussions | 04 | | | 6. Discussing Possible Innovations | 00 | | | Term Tests, Laboratory Examination/Written Examination, Pre | esentations | 10 | | Tot | al Duration in Hours | 45 | # 7. Method of Assessment The details of the components and subcomponents of course assessment are presented in the Programme Specifications document pertaining to the UG Programme (B.Sc. / B.Com/ BBA). The procedure to determine the final course marks is also presented in the Programme Specifications document. The evaluation questions are set to measure the attainment of the COs. In either component (CE or SEE) or subcomponent of CE (SC1, SC2, SC3 or SC4), COs are assessed as illustrated in the following Table. Page 41 of 211 Final Approval by the Academic Council in its 31st meeting held on 22™ March 2024 Departments III albitmelogy M S Ramaiah
University of Applied Sciences Bangalore - 560 054 M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 | | Component 1: CE (60 | | | | |----------------------------------|----------------------|------------|--|--| | Subcomponent | SC1 | SC2 | Component 2:SEE (40%
Weightage)
50 Marks | | | Subcomponent Type Maximum Marks | Practical Assessment | Assignment | | | | | 30 | 30 | | | | CO-1 | X | X | Х | | | CO-2 | | | Х | | | CO-3 | | Χ | Х | | | CO-4 | Х | | Х | | | CO-5 | Χ | X | Х | | | CO-6 | X | | Х | | The Course Leader assigned to the course, in consultation with the Head of the Department, shall provide the focus of COs in each component of assessment in the above template at the beginning of the semester. Course reassessment policies are presented in the Academic Regulations document. # 8. Achieving COs The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.
No | Curriculum and Capabilities
Skills | How imparted during the course | | | | | | |----------|---------------------------------------|--|--|--|--|--|--| | 1. | Knowledge | Face to face lectures | | | | | | | 2. | Understanding | Face to face lectures, group discussions | | | | | | | 3. | Critical Skills | - | | | | | | | 4. | Analytical Skills | Face to face lectures, activities, , group discussions, assignment | | | | | | | 5. | Problem Solving Skills | 77 | | | | | | | 6. | Practical Skills | Face to face lectures, activities, , group discussions, course work | | | | | | | 7. | Group Work | Course work, practice, assignment, group discussion | | | | | | | 8. | Self-Learning | Course work, practice, assignment, group discussion | | | | | | | 9. | Written Communication Skills | Face to face lectures, Course work, practice, assignment, group discussion | | | | | | | 10. | Verbal Communication Skills | Face to face lectures, Course work, practice, assignment, group discussion | | | | | | | 11. | Presentation Skills | • | | | | | | | 12. | Behavioral Skills | Course work, practice, assignment, group discussion, presentation practice, role plays | | | | | | | 13. | Information Management | Assignment | | | | | | | 14. | Personal Management | | | | | | | | 15. | Leadership Skills | | | | | | | Final Approval by the Academic Council In its 31st meeting held on 22nd March 2024 Department of Dietecthology M.S. Roman March 2024 Applied Sciences Bangalore - 560 054 ## 9. Course Resources ## a. Essential Reading - Raman M and Sharma S (2004) Technical Communication: Principles and Practice. New Delhi: Oxford University Press - Hory Sankar Mukherjee, (2013), Business Communication, Oxford University Press - 3. Kroehnert, Gary (2004), Basic Presentation Skills, Tata McGraw Hill # b. Recommended Reading - 1. Sathya Swaroop Debashish and Bhagaban Das, (2014), Business Communication, PHI, New Delhi - 2. Young, Dona J (2006) Foundations of Business Communications: An Integrated Approach, Tata McGraw Hill - 3. Kaul, Asha (2007) Effective Business Communication, Prentice Hall India - 4. Bienvenu, Sherron (2008) The Presentation Skills Workshop, Prentice Hall - 5. KavitaTyagi and Padma Misra (2011) Professional Communication, PHI Learning Private Limited, New Delhi # c. Websites - 1. www.myenglishpages.com - 2. www.britishcouncil.com - www.englishmagazine.com - www.iustenglishmagazine.com ### d. Other Electronic Resources Electronic resources on the course area are available on RUAS library M S Ramaish University of Applied Sciences Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M.S. Ramaiah Univesity of Applied Sciences Bangalors - 580 ABA M. S. Ramaiah University of Applied Sciences Course Specifications of B.Sc. (Hons) in Biotechnology Programme Code: 018 SEMESTER 2 Department of Biotechnology Faculty of Life and Allied Health Sciences M S Ramaiah University of Applied Sciences Faculty of Lines Aliad Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES Final Approval by the Academic Council in its 31st meeting field on 22nd March 2024 M S Ramalah University of Amelian Science Page 44 of 211 Dean - Academics Dean - Academics M.S. Dean - Academics Applied Sciences Bangalore - 560 034 | Course Title | General Chemistry 1 | |--------------|--| | Course Code | BTC104A | | Department | Biotechnology | | Faculty | Faculty of Life and Allied Health Sciences | ## 1. Course Summary The aim of this course is to introduce students to fundamentals concepts and basic applications of Chemistry. The laboratory component of the course aims to train students on estimation and analysis of various chemical compounds and their physical parameters. Student are taught the concepts of the acid-base chemistry, ionic equilibria and chemical bonding. This course emphasizes on the periodic properties of elements and laws of electrochemistry. Students are introduced to the principles of quantitative and qualitative analysis, organic reactions and their applications to real world problems. Students will be able to explain properties and nature of various chemical compounds by performing experiments involving quantitative analysis, estimation and calculations. Students will be trained to calculate, analyse and interpret the data to enter in laboratory record book. ### 2. Course Size and Credits: | Number of Credits | 05 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of laboratory Hours | 60 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | ### Teaching, Learning and Assessment ## 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Describe the structure of atoms, Kh, Kw, Ka, Kb, properties of chemical bonds and reagents, elements and electrolytes. - CO 2. Explain the principles of acid-base concept, periodicity of elements and theory of electrolytes, solubility products of the salts, concepts of bonding in organic molecules, factors affecting bonding, role of reagents in organic reactions. - CO 3. Select suitable method to carryout dissolution of solids, qualitative and quantitative chemical analysis. - CO 4. Determine the accuracy, precision, errors and standard deviations in quantitative - CO 5. Solve problems on pH, Ka, ionization energy, conductance and transport number. - CO 6. Conduct experiments as per the standard procedures and tabulate the measured values/results to Interpret and draw conclusions. - CO 7. Develop a laboratory report as per the prescribed format M.S. Ramaiah University of Applied Sciences Bangalore - Ann hex ### 4. Course Contents # Theory **Unit 1 Chemical bonds in Organic Chemistry:** Hybridization, Bond Lengths and Bond Angles, Bond Energy, Localized and Delocalized Chemical Bonding, Homolytic and Heterolytic bond fission, Van Der Waals Interactions, Inclusion Compounds, Clatherates, Resonance, Hyperconjugation, Aromaticity, Inductive and Field Effects, Hydrogen Bonding. **Unit 2 Reagents In Organic Chemistry:** Types of reagents – electrophiles and nucleophiles, Reactive intermediates – Carbocations, carbanions, free radicals, carbenes, arynes and nitrenes (with examples), Types of organic reactions: Addition reactions; Elimination reactions; substitution reactions and rearrangements. **Unit 3 Electrochemistry:** Electrolytes and their conductance, determination of molar conductance. Conductometric titrations (only acid-base type). Transport numbers – determination by moving boundary method, abnormal transport numbers, ionic mobility, numerical on transport numbers. Conductivity of water, Kohlrausch's law and its applications: (i) evaluation of + and (ii) degree of dissociation of a weak electrolyte (iii) of a weak electrolyte (iv) determination of solubility from conductance of saturated solutions of sparingly soluble salts (AgCl and BaSO4) and numerical. **Unit 4 Ionic equilibria:** Acid-base concept, Hydrolysis of salts of weak acids and weak bases. Ionic product of water. Relationship between Kh, Kw, Ka and Kb. Degree of hydrolysis and its relationship with Kh. Effect of temperature and dilution on degree of hydrolysis, pH of salt solutions, numerical. Common-ion effect, buffers, buffer action and buffer capacity. pH of buffers. Henderson's equation and its derivation, Solubility product and ionic product in precipitation and in qualitative analysis, Theories of indicators. **Unit 5 Properties of Periodic Table:** Modern periodic table with respect to classification of elements based on outer electronic configuration. Periodic properties: Atomic and ionic radii, ionization energy, electron affinity and electronegativity. Effective nuclear charge, shielding or screening effect, Trends in the periodic properties. Determination of electronegativity by Pauling's method, diagonal relationship between beryllium and aluminum. **Unit 6 Chemical Analysis: Gravimetric Analysis:** Solubility product and common ion effect, requirement of gravimetry, Techniques of Precipitations, filtration, washing, drying, igniting and weighing precipitates. Gravimetric estimation of chloride & nickel. Volumetric analysis – primary and secondary standard substance / (solution). Principles of acid-base, oxidation-reduction and complexometric titration. Acid-Base, redox and metal ion indicators. Analysis of real samples: Sampling techniques, methods of dissolution of solid samples for chemical analysis. Determination of hardness water. Estimation of glucose & phenol. Accuracy and precision in quantitative analysis, errors, standard deviations. #### Practical -
Determination of concentration of unknown NaOH using std. Oxalic acid. - Determination of concentration of unknown KMnO4 using std. Oxalic acid. - 3. Conductometric estimation of amount of HCl present in the given solution using NaOH. - 4. Determination of pKa value of a weak acid using pH meter. Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Speptral Cale Control of Applied Sciences Bracelone - 530 954 Page 46 of 211 Dean - Academics Dean - Academics M.S. Paich University of Applied Sciences Bangalore - 560 054 - 5. Determination of buffer capacity of acetic acid-sodium acetate buffer using pH meter. - 6. Iodometric estimation of copper in unknown sample. - 7. Estimation of hardness of water using complexometric titration. - 8. Determination of concentration of unknown KMnO4 using std. ferrous ammonium sulphate. - 9. Functional group identification of any four organic compounds (alcohols, amines, halides, carboxylic acids, phenols, alkanes, aldehydes and ketones) # 5. CO-PO PSO Mapping: | | 5 | P02 | PG | 904 | POS | P06 | P07 | 8 | ő | 5 | <u>7</u> | P012 | PSOT | PSO2 | | |------|---|-----|----|-----|-----|-----|------------|---|---|-----|----------|------|------|------|---| | CO-1 | 3 | - | 1 | - | 2 | 2 | - | - | | | - | | 2 | 2 | t | | CO-2 | 2 | - | 1 | - | 3 | 2 | <u>_</u> - | - | - | | - | | 2 | 3 | T | | CO-3 | 2 | - | 1 | - | 2 | 3 | 1 | | · | - | - | • | 3 | 2 | T | | CO-4 | 2 | - | 2 | - | 3 | 3 | - | - | - | | - | | 3 | 3 | T | | CO-5 | 3 | - | 2 | - | 3 | 2 | - | - | | 1.0 | - | - T | 2 | 2 | T | | CO-6 | 3 | | 3 | - | 2 | 2 | | | - | × | - | | 2 | 3 | T | | CO-7 | 3 | | 3 | - | 2 | 3 | - | - | | | - | 2.50 | 3 | 2 | T | # 6. Course Teaching and Learning Methods: | eaching and Learning Methods | Total Duration in
Hours | | |---|----------------------------|----| | Face to Face Lectures | 36 | | | Demonstrations | | | | Demonstration using Videos | 02 | 1 | | Demonstration using Physical Models / Systems | | 03 | | 3. Demonstration on a Computer | | 1 | | Numeracy | | | | Solving Numerical Problems | | | | Practical Work | | | | 1. Course Laboratory | 24 | | | 2. Computer Laboratory | | | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | 56 | | 5. Hospital | | | | 6. Model Studio | | | | Others | | | | 1. Case Study Presentation | 05 | | | 2. Guest Lecture | | | | 3. Industry / Field Visit | | 02 | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 MS Ramaiah University of Applied School M.S. Ramaiah University of Applied Sciences | 5. Group Discussions | | |---|-------| | 6. Discussing Possible Innovations Ferm Test and Written Examination | 04+04 | | Total Duration in Hours | 105 | ### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | | | SEE
Veightage) | | | |------|-------------------------|----------|-------------------|------------------------|------------------| | | SC1
(Term Tests) 30% | | | SEE
(Theory)
25% | SEE
(Lab) 15% | | | (25 + 25 Marks) | 20 Marks | 40 Marks | 50 Marks | 30 Marks | | CO-1 | X | Х | | Х | | | CO-2 | X | Х | | Х | | | CO-3 | X | | Х | Х | | | CO-4 | | | Х | Х | | | CO-5 | | X | | Х | | | CO-6 | | X | Х | | Х | | CO-7 | | | Х | | Х | # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | s How imparted during the course | | | | | |------|------------------------------------|----------------------------------|--|--|--|--| | 1 | Knowledge | Classroom lectures, Assignment | | | | | | 2 | Understanding | Classroom lectures, Assignment | | | | | | 3 | Critical Skills | Classroom lectures, Assignment | | | | | | 4 | Analytical Skills | Classroom lectures, Assignment | | | | | | 5 | Problem Solving Skills | - | | | | | | 6 | Practical Skills | | | | | | | 7 | Group Work | Assignment/ Class Presentations | | | | | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramaiah University Page 48 of 211 Dean - Academics M.S. Vascaiah University of Applied Sciences Bangalore - 560 054 | 8 | Self-Learning | Assignment, Examination | |----|------------------------------|---| | 9 | Written Communication Skills | Assignment | | 10 | Verbal Communication Skills | Class Presentations | | 11 | Presentation Skills | Class Presentations | | 12 | Behavioral Skills | | | 13 | Information Management | Assignment ^ | | 14 | Personal Management | Assignment, Examination | | 15 | Leadership Skills | Effective management of learning, time management achieving the learning outcomes | ### 9. Course Resources ## 5. Essential Reading - 1. Course notes - 2. Lab Manual - Puri, B.R., Sharma, L.R., Pathania, M.S., 2017, Principles of Physical Chemistry, 47th Edition, Vishal Publishing Co. - 4. Soni P.L., 1983, Textbook of Physical Chemistry, 14th Edition, New Delhi, Sultan Chand & Sons - 5. Puri, B.R., Sharma, L.R., Kalia, K.C., 2017, Principles of Inorganic Chemistry, 33rd Edition, Milestone Publishers and Distributors/Vishal Publishing Co. - Vogel, A.I., Jeffery, G.H., 1989, Vogel's text book of quantitative chemical analysis, Longman Scientific & Technical. # 6. Recommended Reading - 1. Huheey, J.E., 2006, Inorganic Chemistry, Derling Kindersley (India) Pvt. Ltd. - 2. Atkins, P. De Paula, J., 2014, Atkins' Physical chemistry, 10th Edition, Oxford University Press. - **3.** Smith, M. B., 2013, Advanced Organic Chemistry: Reaction, Mechanism and Structure, 7th Edition, Wiley. ## c. Magazines and Journals - 1. https://ccj.springeropen.com/ - 2. https://www.elsevier.com/physical-sciences/chemistry/chemistry-journals ### d. Websites 1. http://chemquide.co.uk/ ### e. Other Electronic Resources http://www.chemistryonline.com/slides.html Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Remarch University of Applied Sciences Eangalore - 560 054 Page 49 of 211 Academics M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 | Course Title | Principles of Microbiology | | |--------------|--|--| | Course Code | BTC105A | | | Department | Biotechnology | | | Faculty | Faculty of Life and Allied Health Sciences | | ## 1. Course Summary The aim of this course is to provide students the idea of Microbiology including the diversity, physiology, morphology, genetics, ecology, applications and pathogenicity. Students will be acquainted with the concepts of general Microbiology which is an integral part of Biological Sciences. Students will be able to discuss and relate the structure, function and taxonomy of microbial world including bacteria, fungi and viruses. The course will familiarize students with the general principles of microbial growth, evolution, classification, description and pathogenicity. The students will have training based on several commonly used techniques in microbiology, including those used in bacterial identification by staining techniques and biochemical assays. They will be trained to design and interpret experiments in aseptic conditions. They will acquire experience of current scientific methodologies appropriate to microbiology. ## 2. Course Size and Credits: | Number of Credits | 5 | | | | |--------------------------------------|-------------------------------|--|--|--| | Total Hours of Classroom Interaction | 45 | | | | | Number of laboratory Hours | 60 | | | | | Number of Semester Weeks | 16 | | | | | Department Responsible | Biotechnology | | | | | Course Marks | 100 | | | | | Pass Requirement | As per university regulations | | | | | Attendance Requirement | As per university regulations | | | | # Teaching, Learning and Assessment # 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Discuss the history of microbiology and classification of microorganisms. - CO 2. Describe the structural similarities and differences among microbes and the unique structure/function relationships. - CO 3. Describe sterifization approaches for controlling the growth of microorganisms and biosafety regulatory framework for prokaryotes. - CO 4. Illustrate the basic concept of virology with comparison to bacteriology. - CO 5. Explicate the pathogenicity of microorganisms. - CO 6. Apply the tools and techniques of microbiology in conducting basic research. - CO 7. Comprehend the various methods for identification of unknown microorganisms. Page 50 of 211 Dean - Academics M.S. Reports University of Aprilled Poisson Final Approval by the Academic Council in its 31st meeting held on 22™ March 2024 ### 4. Course Contents ## Theory **Unit 1 History and scope of Microbiology:** Biogenesis and abiogenesis, Germ Theory, Contributions of Anton Von Leeuwenhoek, Louis Pasteur, Robert Koch, Joseph Lister, Alexander Fleming, Edward Jenner. **Unit 2 Systematics of bacteria:** Systems of classification, Identifying characters for classification, General properties and criteria for classification of microorganisms. Classification based on oxygen, temperature and nutritional requirement. Bergey's Manual of systematic bacteriology. **Unit 3 Sterilization, Staining and Biochemical characterization:** Definition of sterilization, disinfection, sanitization, antisepsis, and
fumigation. Methods of sterilization - Dry and moist heat, pasteurization, tyndallization, radiation, filtration and Chemical methods. Theories and mechanism of gram staining, acid fast staining, negative staining, capsule staining, and endospore staining. Biochemical test: IMViC test, catalase and oxidase test. **Unit 4 Microbial Growth & Physiology:** Ultrastructure of Bacteria, differences in gram positive and negative cell wall. Nature, special features of the thermophilic, methanogenic and halophilic Archaea; photosynthetic bacteria, Cyanobacteria, chemosynthetic bacteria, Actinomycetes, Unicellular Eukaryotes (Yeast), Microbial growth kinetics and estimation. **Unit 5 Basic concepts of Virology:** General characteristics of viruses, differences between bacteria and viruses. Classification of viruses, Physical and chemical Structures of different Viruses on the basis of capsid symmetry and envelope. Structure of T4, TMV and HIV, Replication of T4 bacteriophage, lytic and lysogenic cycle. Structure and importance of Viroids and Prions. **Unit 6 Microbial Interactions and Infection:** Host-Pathogen interactions; Microbes infecting humans, veterinary animals and plants; Pathogenicity islands and their role in bacterial virulence. Introduction to Gut Microbiome: Gut Microbiota in health and disease. ### **Practical** - 1. Sterilization, disinfection, safety in microbiological laboratory. - 2. Preparation of media for growth of various microorganisms. - 3. Sampling and quantification of microorganisms in air, soil and water. - 4. Isolation and plating of bacteria Streak plate, spread plate, and pour plate. - 5. Staining and enumeration of microorganisms Simple staining and differential staining. - 6. Staining and enumeration of microorganisms Capsule staining and Endospore staining. - 7. Staining of eukaryotic microorganisms Fungal staining. - 8. Study of bacterial growth and motility. - 9. Biochemical characterization of Bacteria IMViC test. - 10. Biochemical characterization of Bacteria Catalase test and oxidase test. Page 51 of 211 Dean Archemics M.S. Ramaiah U gyesitylsf Applied Sciences B. poglere - 560 654 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Reconstruction of Applied Sciences Applied Sciences # 5. CO-PO PSO Mapping: | 5 | P02 | P03 | 졏 | 56 | ş | P07 | 90g | 8 | PO10 | 5 | PO12 | PS01 | 202 | | |---|---------|-------------------------------|--|---|---|---|---|---|--|---|---|---|---|---| | 3 | 2 | - | - | - | | 24 | - | - | - | | 1 | 1 | | - | | 3 | 3 | 2 | | - | - | ::0 | - | | 3 | 1 | 3 | 3 | 2 | - | | - | 3 | 2 | | 3 | | | | 1 | 1 | | 3 | 1 | 3 | - | | 3 | 2 | 2 | | 3 | | · •) | | - | 2 | - | 3 | 3 | 2 | | | - | - | 2 | - | 3 | - | 350 | - | - | - | | 3 | 3 | 3 | t | | - | 3 | 2 | - | 3 | - | -27 | 2 | 2 | 2 | - | 3 | 3 | 3 | | | 2 | 3 | 3 | - | 2 | - | | 2 | - | - | - | 3 | 3 | 3 | | | | 3 3 - 3 | 3 2
3 3
- 3
3 2
3 | 3 2 -
3 3 2
- 3 2
3 2 2
2
- 3 2 | 3 2 3 2 - 3 2 2 - 3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 | 3 2 - - 3 3 2 - - - 3 2 - 3 3 2 2 - 3 - 2 - 3 - 3 2 - 3 | 3 2 - - - - 3 3 2 - - - - 3 2 - 3 - 3 2 2 - 3 - - - 2 - 3 - - 3 2 - 3 - | 3 2 - - - - 3 3 2 - - - - 3 2 - 3 - 3 2 2 - 3 - - 2 - 3 - - 3 2 - 3 - - 3 2 - 3 - | 3 2 - - - - - 3 3 2 - - - - - 3 2 - 3 - - - 3 2 2 - 3 - - - - 2 - 3 - - 2 - 3 2 - 3 - - 2 | 3 2 - <td>3 2 - - - - - - - 3 3 2 - - - - - - - 3 2 - 3 - - - 2 - - 2 - 3 - - - - - - 3 2 - 3 - - - - - - 3 2 - 3 - - 2 2 2</td> <td>3 2 - - - - - - - 3 3 2 - - - - - - - 3 2 - 3 - - - 2 - - 2 - 3 - - - - - - - 3 2 - 3 - - 2 2 2</td> <td>3 2 - - - - - - 1 3 3 2 - - - - - - - 3 - 3 2 - 3 - - - - 2 - 3 - - 2 - 3 - - - - - 3 - 3 2 - 3 - - - - 3 - 3 2 - 3 - - 2 2 2 - 3</td> <td>3 2 - - - - - 1 1 3 3 2 - - - - - 3 3 - 3 2 - 3 - - 1 1 - 3 1 3 2 2 - 3 - - - 2 - 3 3 - 2 - 3 - - 2 2 2 - 3 3</td> <td>3 2 - - - - - 1 1 2 3 3 2 - - - - - 3 3 2 - 3 2 - 3 - - 1 1 - 3 1 3 3 2 2 - 3 - - - 2 - 3 3 2 - 2 - 3 - - - - - - 3 3 - 3 2 - 3 - - 2 2 2 - 3 3</td> | 3 2 - - - - - - - 3 3 2 - - - - - - - 3 2 - 3 - - - 2 - - 2 - 3 - - - - - - 3 2 - 3 - - - - - - 3 2 - 3 - - 2 2 2 | 3 2 - - - - - - - 3 3 2 - - - - - - - 3 2 - 3 - - - 2 - - 2 - 3 - - - - - - - 3 2 - 3 - - 2 2 2 | 3 2
- - - - - - 1 3 3 2 - - - - - - - 3 - 3 2 - 3 - - - - 2 - 3 - - 2 - 3 - - - - - 3 - 3 2 - 3 - - - - 3 - 3 2 - 3 - - 2 2 2 - 3 | 3 2 - - - - - 1 1 3 3 2 - - - - - 3 3 - 3 2 - 3 - - 1 1 - 3 1 3 2 2 - 3 - - - 2 - 3 3 - 2 - 3 - - 2 2 2 - 3 3 | 3 2 - - - - - 1 1 2 3 3 2 - - - - - 3 3 2 - 3 2 - 3 - - 1 1 - 3 1 3 3 2 2 - 3 - - - 2 - 3 3 2 - 2 - 3 - - - - - - 3 3 - 3 2 - 3 - - 2 2 2 - 3 3 | # 6. Course Teaching and Learning Methods: | Feaching and Learning Methods | Total Duration in
Hours | | |---|----------------------------|-------| | Face to Face Lectures | 36 | | | Demonstrations | | | | Demonstration using Videos | 02 | | | Demonstration using Physical Models / Systems | 01 | 03 | | 3. Demonstration on a Computer | | | | Numeracy | | | | Solving Numerical Problems | | | | Practical Work | | | | 1. Course Laboratory | 55 | | | 2. Computer Laboratory | | 1 | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | 56 | | 5. Hospital | | 1 | | 6. Model Studio | | | | Others | · · | | | Case Study Presentation | | 1 | | 2. Guest Lecture | | 1 | | 3. Industry / Field Visit | | 1 | | Brainstorning Sessions | | 02 | | 5. Group Discussions | 01 | U2 | | 6. Discussing Possible Innovations | 01 | | | erm Test and Written Examination | 1 | 04+04 | | Total Duration in Hours | | 105 | M.S. Remainder No. 10 to Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Department Natifications M.S. Ramaian Chiverent of Applied Sciences ## 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | | | SEE
Veightage) | | | |------|-------------------------|---|--|------------------------|------------------| | | SC1
(Term Tests) 30% | SC2
(Innovative + Lab
assignment) 10% | SC3
(Written + Lab
Assignment) 20% | SEE
(Theory)
25% | SEE
(Lab) 15% | | | (25 + 25 Marks) | 20 Marks | 40 Marks | 50 Marks | 30 Marks | | CO-1 | X | X | | Х | | | CO-2 | X | Х | | Х | | | CO-3 | X | | Х | Х | | | CO-4 | | | Х | Х | | | CO-5 | | | | Х | | | CO-6 | | Х | X | | Х | | CO-7 | | Х | Х | | Х | # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | .No | Curriculum and Capabilities Skills | How imparted during the course | | |-----|------------------------------------|--------------------------------|--| | 1 | Knowledge | Classroom lectures | | | 2 | Understanding | Classroom lectures, Self-study | | | .3 | Critical Skills | Assignment | | | 4 | Analytical Skills | Assignment | | | 5 | Problem Solving Skills | Assignment, Examination | | | 6 | Practical Skills | Assignment, Examination | | | 7 | Group Work | (2 | | | 8 | Self-Learning | Self-study | | | 9 | Written Communication Skills | Assignment, Examination | | | 10 | Verbal Communication Skills | - | | | 11 | Presentation Skills | | | | 12 | Behavioral Skills | | | | 13 | Information Management | Assignment | | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M.S. Population of Dictochnology M.S. Population University of Applied Sciences ia igaloro - 500 654 M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 | 14 | Personal Management | | |----|---------------------|---| | 15 | Leadership Skills | - | # 9. Course Resources ## a. Essential Reading - 1. Pelczar, M.J., Reid, R.D., Chan, E.C.S., 2010, Microbiology, Oxford University Press, UK. - 2. Prescott, L.M., Harley, J.P., Klein, D.A., 2005, Microbiology, McGraw-Hill Higher Education. - 3. Willey, J.M., Sherwood, L.M., Woolverton, C.J., 2008, Prescott, Harley and Klein's - 4. Microbiology, 7th edition. McGraw Hill Higher Education. - 5. Powar, C.B., and Daginawala, H.F., 1987, General Microbiology: volume I & II, Himalaya Pub. House. - 6. Sullia, S.B., Shantharam, S., 2004, General Microbiology, 2nd edition (revised), Oxford and IBH Publishing. - 7. Baveja, C.P., 2017, Textbook of Microbiology, Arya Publishing Company, India. ## b. Recommended Reading - 1. Tortora, G.J., Funke, B.R., Case, C.L., 2000, Microbiology: An introduction, 12th Edition, Benjamin-Cummings pub co, UK. - 2. Brooks, G., Carroll, K.C., Butel, J., Morse, S., 2013, Medical Microbiology, 26th Edition (LANGE Medical book), Mc Graw Hill, UK. ### Magazines and Journals - 1. https://www.springer.com/life+sciences/microbiology/journal/12275 - https://www.hindawi.com/journals/ijmicro/ - 3. http://mic.microbiologyresearch.org/content/journal/micro - 4. https://www.journals.elsevier.com/microbiological-research/ # d. Websites - 1. http://microbiologyonline.org/ - 2. https://www.hhmi.org/biointeractive ___ Page 54 of 211 Dean - Academics M.S. Ramaiah University of Applied Science Bangalore - 550 054 Bangalore - 560 054 | Course Title | Organic mechanisms in Biology | |--------------|--| | Course Code | BTC106A | | Department | Biotechnology | | Faculty | Faculty of Life and Allied Health Sciences | ## 1. Course Summary The course aims to acquaint students on complex organic mechanisms of life. Students will be familiarized in the underlying mechanisms of biochemical processes that governs life. Students will be equipped to differentiate, characterize and correlate between the complex metabolic processes of the macromolecules in biological life. ### 2. Course Size and Credits: | Number of Credits | 3 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of tutorial hours | 00 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | ## Teaching, Learning and Assessment # 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Elucidate the complexity of the organic mechanisms involved in carbohydrate metabolism. - CO 2. Elucidate and relate the mechanisms of amino acid metabolism. - CO 3. Illustrate the fatty acids and glycerol with relevance to their complex mechanisms of metabolism. - CO 4. Give details on the biosynthesis and metabolic processes involving nucleotides. - ${\sf CO}$ 5. Categorize the structure, function and relate the coordination of biochemical messengers. #### 4. Course Contents # Theory **Unit 1 Common Mechanisms in Biological Chemistry:** Metabolism (Anabolism and Catabolism); An overview of Photosynthesis (Light and Dark reactions); Overview of Nutrition, Digestion, respiration, absorption and excretion. An overview of thermodynamics of biochemical reactions: Laws of thermodynamics, Properties of Pure Substance, Thermodynamic Relations, Thermodynamics Cycles and Ideal Gas Mixtures. **Unit 2 Carbohydrate Metabolism:** Aerobic & Anaerobic glycolysis, sequence of reactions in glycolysis, regulation in glycolysis, citric acid cycle, glycogenesis, glycogenolysis (sequence Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Rameich University of Applied Sciences Bangalore - 560 054 Page 55 of 211 Dean Attach flics M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 of reactions & regulation), Pentose-phosphate pathway (sequence of reactions & regulation), extraction of energy from food sources. **Unit 3 Amino acid Metabolism:** Amino acid breakdown (amino acid deamination, Urea cycle, metabolic breakdown of individual amino acids – glucogenic & ketogenic amino acids), amino acids as biosynthetic precursors (haeme biosynthesis & degradation, biosynthesis of epinephrine, dopamine, serotonin, GABA, histamine, glutathione); biosynthesis of essential & non-essential amino acids **Unit 4 Lipid Metabolism:** Structures and roles of Fatty acids & Glycerols, beta oxidation of saturated fatty acids, oxidation of unsaturated fatty acids, oxidation of odd chain fatty acids, energy yield, ketone bodies **Unit 5 Nucleotide Metabolism:** Biosynthesis of purine & pyrimidine (de novo & salvage pathway); degradation of purine & pyrimidine **Unit 6 Hormone & Vitamins:** Chemical nature of Hormone, Molecular mechanism of Hormone action, Function of trophic Hormone (FSH,TSH, ACTH, GH), Insulin, testosterone ,Estrogen, progesterone, HCG, Disease related to hormone –Diabetes melitus, diabetes insipidus, Vitamins (classification, functions of vitamins in bio-systems) # 5. CO-PO PSO Mapping: | | ᅙ | P 02 | 8 | 졏 | Ş | స్ట | ğ | 20 | 8 | PO10 | 5 | PO12 | P804 | PS02 | 8 | |------|---|-------------|---|---|---|-----|---|----|---|------|---|------|------|------|---| | CO-1 | 3 | 2 | 3 | 3 | 2 | - | - | 2 | - | - | - | | 3 | 2 | H | | CO-2 | 3 | 2 | 3 | | 2 | - | - | 2 | - | - | - | · 🐷 | 3 | 2 | | | CO-3 | 3 | 1 | 1 | ļ | 1 | - | - | 1 | - | - | | | 2 | 1 | | | CO-4 | 3 | 1 | 1 | - | 1 | - | - | 1 | - | - | - | | 2 | 1 | | | CO-5 | 3 | 2 | 3 | | 2 | - | - | 2 | - | - | - | | 2 | 2 | | ## 6. Course Teaching and Learning Methods: | aching and Learning Methods | Duration in hours | Total Duration in
Hours | |--|-------------------|----------------------------| | Face to Face Lectures | | 36 | | Demonstrations | | | | Demonstration using Videos | 02 | 1 | | 2. Demonstration using Physical Models / Systems | 01 | 03 | | 3. Demonstration on a Computer | | 1 | | Numeracy | | | | Solving Numerical
Problems | | 1 | | Practical Work | | | | 1. Course Laboratory | | Ī | | 2. Computer Laboratory | | | Final Approval by the Academic Council in its 31st meeting held on 22rd March 2024 M S Ramaiah University of Applied Sciences Bangalore - 560 054 | Hospital Model Studio | | 1 | |------------------------------------|----|----| | Others | | | | 1. Case Study Presentation | | Ī | | 2. Guest Lecture | | | | 3. Industry / Field Visit | | | | 4. Brainstorming Sessions | | 02 | | 5. Group Discussions | 01 | | | 6. Discussing Possible Innovations | 01 | | | erm Test and Written Examination | • | 04 | | otal Duration in Hours . | | 45 | #### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | SC1
(Term Tests) 30% | SC2
(Assignments) 10% | SC3
(Assignments) 20% | SEE
(40% Weightage) | | |------|-------------------------|--------------------------|--------------------------|------------------------|--| | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | | | CO-1 | X | Х | | Х | | | CO-2 | X | Х | | X | | | CO-3 | X | Х | X | Х | | | CO-4 | X | | Х | X | | | CO-5 | | | ,X | Х | | The Course Leader assigned to the course, in consultation with the Head of the Department, shall provide the focus of course outcomes in each component assessed in the above template at the beginning of the semester. Course reassessment policies are also presented in the Academic Regulations document. ## 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramaian University of Applied Sciences Bangatore - 580 054 Page 57 of 211 M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 | .No | Curriculum and Capabilities Skills | How imparted during the course | | |-----|------------------------------------|--------------------------------|---| | 1 | Knowledge | Classroom lectures | | | 2 | Understanding | Classroom lectures, Self-study | | | 3 | Critical Skills | Assignment | | | 4 | Analytical Skills | Assignment | | | 5 | Problem Solving Skills | Assignment, Examination | | | 6 | Practical Skills | Assignment | | | 7 | Group Work | | | | 8 | Self-Learning | Self-study | | | 9 | Written Communication Skills | Assignment, Examination | | | 10 | Verbal Communication Skills | •1 | | | 11 | Presentation Skills | - | | | 12 | Behavioral Skills | _ | | | 13 | Information Management | Assignment | | | 14 | Personal Management | - | | | 15 | Leadership Skills | - | _ | ### 9. Course Resources ## a. Essential Reading - 1. Berg J.M., Tymoczko J.L., Stryer L., 2011, Biochemistry, 7th revised international Edition, W.H. Freeman. - 2. Nelson, D. L., & Cox, M. M., 2008, Lehninger principles of biochemistry. 7th Edition, W.H. Freeman, N. Y.; N. D. - 3. Jain, J.L., Jain, S., Jain, N., 2016, Fundamentals of Biochemistry, S. Chand and Company. - 4. Das D., 2014, Biochemistry, Academic publishers. - 5. Satyanarayana, U., 2013, Biochemistry, Elsevier, India. - 6. Zubay, G., 1997, Principles of Biochemistry, 4th edition, Brown (William C.) Co.,U.S. ### b. Recommended Reading Voet, D., Voet, J.G., 2011, Biochemistry, 4th edition, John Wiley & Sons. # c. Magazines and Journals https://www.journals.elsevier.com/metabolism/ ### d. Websites - http://www.csun.edu/~hcchm001/biosites.htm - 2. https://library.med.utah.edu/NetBiochem/titles.htm - http://www.themedicalbiochemistrypage.org/#nogo - 4. https://basicbiology.net/micro/biochemistry/ #### e. Other Electronic Resources 1. http://www.ias.ac.in/Journals/Overview/ Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Department of Biotechnology M S Ramaiah University of Applied Sciences Dean - Academics M.S. Varnalish University of Applied Sciences Bangalore - 560 054 | N | Biotechnology for Human Welfare | |--------------|--| | Course Title | | | Course Code | BTO102A | | Department | Biotechnology | | Faculty | Faculty of Life and Allied Health Sciences | ## 1. Course Summary The course aims to provide a basic understanding of application of biotechnology in agriculture, animal husbandry, environment, human health and sustainable development. Students will be able to acquire knowledge about the scientific and technological advances in agriculture, animal breeding, environmental science and medicine for enhancement of human health and welfare. #### 2. Course Size and Credits: | Number of Credits | 03 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of tutorial Hours | 00 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | ### Teaching, Learning and Assessment # 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Explain the use of enzymes, microorganisms, and plants to produce bio-based products in sectors such as textiles, food ingredients and biofuels. - CO 2. Understand the contribution of biotechnology in the field of agriculture towards ensuring higher quality, yield, nutrition and global food security. - CO 3. Describe the contributions of animal biotechnology in developing improved livestock, poultry, and fisheries towards higher production of food, and transgenic animals for molecular pharming of therapeutics. - CO 4. Identify factors causing environmental pollution, problems associated with waste management, and various methods of bioremediation towards safe resolution of environmental hazards. - CO 5. Discuss the impact of biotechnology in developing enhanced diagnostic tools, novel therapeutic drugs and approaches for uplifting human health and quality of life. ### 4. Course Contents ### Theory **Unit 1 Basic Molecular Biology Techniques:** PCR, DNA fingerprinting, RAPD, Sequencing- applications in forensics and genetics Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramers of the Applied Sciences Bangalore - 560 054 Down Academics M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 Page 59 of 211 **Unit 2 Industry:** Enzymes for textile industry, breweries, food processing, biodegradable plastics, biofuels. **Unit 3 Environment:** Waste management, biodegradation of heavy metals, water cleaning, removing oil spills, air and soil pollution, bioremediation, biomining. **Unit 4 Agriculture:** N2 fixation, Overview of transgenic crops with improved agronomic traits and food security, interaction between plants and microbes, biofertilisers and organic farming. **Unit 5 Animal husbandry:** Recombinant DNA technology, Transgenic animals, animal vaccine production, increased milk production, artificial insemination, poultry and fisheries. **Unit 6 Human Health:** Antibiotic production, Molecular diagnostics, recombinant vaccines, gene therapy, HGP and its applications. # 5. CO-PO PSO Mapping: | 5 | 8 | ğ | 졅 | Ş | <u>8</u> | 70 | 8 | P09 | 8 010 | <u>7</u> | P012 | PSO1 | PS02 | | |---|-------|-------------------|----------------------|-------------------|--------------------------------|--|---|---|---|---|---|---|---|---| | 3 | | 2 | | 1 | - | | 1 | 1 | 2 | - | | 2 | - | H | | 3 | 800 | - | - | 3 | - | - | 1 | | 1 | - | | 3 | - | t | | 3 | • | - | | 3 | - | - | 1 | - | 1 | - | 1-1 | 3 | - | t | | 3 | (\$0) | - | | 3 | - | - | 1 | 1 | 3 | | - | 3 | - | H | | 3 | 300 | - | - | 3 | - | - | 1 | - | - | | | 3 | - | H
| | | 3 3 3 | 3 -
3 -
3 - | 3 - 2
3
3
3 | 3 - 2 -
3
3 | 3 - 2 - 1
3 3
3 3
3 3 | 3 - 2 - 1 -
3 3 -
3 3 -
3 3 - | 3 - 2 - 1 - - 3 - - - 3 - - 3 - - - 3 - - 3 - - - 3 - - | 3 - 2 - 1 - - 1 3 - - - 3 - - 1 3 - - - 3 - - 1 3 - - - 3 - - 1 | 3 - 2 - 1 - - 1 1 3 - - - 1 - 3 - - - 1 - 3 - - 1 1 3 - - 1 1 | 3 - 2 - 1 - - 1 1 2 3 - - - 3 - - 1 - 1 3 - - - 3 - - 1 - 1 3 - - - 3 - - 1 1 3 | 3 - 2 - 1 - - 1 1 2 - 3 - - - 3 - - 1 - 1 - 3 - - - 3 - - 1 1 3 - 3 - - - 3 - - 1 1 3 - | 3 - 2 - 1 - - 1 1 2 - - 3 - - 3 - - 1 - 1 - - 3 - - 3 - - 1 1 3 - - 3 - - 3 - - 1 1 3 - - | 3 - 2 - 1 - - 2 3 - - 3 - - 1 - 2 3 - - 3 - - 1 - - 3 3 - - - 3 - - 1 1 3 - - 3 | 3 - 2 - 1 - - 2 - 2 - 3 - - 3 - - 1 - 1 - - 3 - 3 - - 3 - - 1 1 3 - 3 - 3 - - 3 - - 1 1 3 - 3 - | ## 6. Course Teaching and Learning Methods: | aching and Learning Methods | Total Duration in
Hours | | |---|----------------------------|----| | Face to Face Lectures | 36 | | | Demonstrations | | | | Demonstration using Videos | 02 | 1 | | 2. Demonstration using Physical Models / Systems | 01 | 03 | | 3. Demonstration on a Computer | | | | Numeracy | | | | Solving Numerical Problems | | | | Practical Work | | | | 1. Course Laboratory | | | | 2. Computer Laboratory | | 00 | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Department of Bietechnology I S Ramaiah University of Applied Sciences Bangalore - 560 054 Dean - Academics Dean - Academics M.S. Ramalah University of Applied Sciences Bangalore - 550 054 | 6. Model Studio | | | |----------------------------------|----|------| | Others | | | | Case Study Presentation | | | | 2. Guest Lecture | | 1 | | 3. Industry / Field Visit | | 1 | | 4. Brainstorming Sessions | | 02 | | 5. Group Discussions | 01 |] 02 | | Discussing Possible Innovations | 01 | | | erm Test and Written Examination | | 04 | | otal Duration in Hours | | 45 | ### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | Focus of Course | Learning Outcome | s in each component a | ssessed | | |------|----------------------------|-----------------------------|-----------------------------|-----------------------|--| | 55 | | | | | | | | SC1
(Term Tests)
30% | SC2
(Assignments)
10% | SC3
(Assignments)
20% | SEE
(40% Weightage | | | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | | | CO-1 | Х | Х | | Х | | | CO-2 | X | Х | | Х | | | CO-3 | X | Х | Х | Х | | | CQ-4 | X | | X | Х | | | CO-5 | | | X | Х | | # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | Capabilities Skills How imparted during the course | | | | |------|------------------------------------|--|--|--|--| | 1 | Knowledge | Classroom lectures | | | | | 2 | Understanding | Classroom lectures, Self-study | | | | | 3 | Critical Skills | Assignment | | | | | 4 | Analytical Skills | Assignment | | | | | 5 | Problem Solving Skills | Assignment, Examination | | | | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramoian University of Applied Sciences Bangalore - 560 054 Page 61 of 211 Dean M.S. Ramaiah University of Applied Sciences Bange fore - 560 054 | 6 | Practical Skills | Assignment | | |-----|------------------------------|-------------------------|--| | 7 | Group Work | | | | 8 | Self-Learning | Self-study | | | 9 | Written Communication Skills | Assignment, Examination | | | 10 | Verbal Communication Skills | | | | 11 | Presentation Skills | ш | | | 12 | Behavioral Skills | | | | 1.3 | Information Management | Assignment | | | 14 | Personal Management | | | | 15 | Leadership Skills | - | | ### 9. Course Resources ## a. Essential Reading - 1. Bhasin, M.K. and Nath, S. 2002. Role of Forensic Science in the New Millennium, University of Delhi. - 2. Crueger Wand Crueger, A. 2000. Biotechnology: A textbook of Industrial Microbiology. 2nd edition. Panima Publishing Co. New Delhi. - 3. Hans-Joachim Jordening and Jesef Winter, 2005. Environmental Biotechnology Concepts and Applications. - 4. James, S.H. and Nordby, J.J. 2005. Forensic Science: An Introduction to Scientific and Investigative Techniques, 2nd Edition, CRC Press, Boca Raton. - 5. Patel, A.H. 1996. Industrial Microbiology.1st edition, Macmillan India Limited. - 6. Pradipta Kumar Mohapatra, 2020. Environmental Biotechnology, Dreamtech Press. - 7. Saha Tand Tiwary, B.K. 2020, Microbes, Environment and Human Welfare. Nova Science Publishers. - 8. Prasad, R., Gill, S.S and Tuteja N. 2018.New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier Faculty of Life & Allied Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-866 J54 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Skrytead Vallur Department of Biotechnology Page 62 of 211 Dean - Academics Dean - Academics A.S. Remaich University of Applied Sciences | Course Title | Environmental Studies | | | | |--------------|--|--|--|--| | Course Code | BTN101A | | | | | Department | Department Biotechnology | | | | | Faculty | Faculty of Life and Allied Health Sciences | | | | ## 1. Course Summary The aim of this course is to invoke awareness among students about the burning global environmental issues. The course exposes the students to various problems associated with abuse of natural resources. The concepts of ecosystems, biodiversity and its conservation and environmental pollution will be discussed. The course emphasizes social issues associated with the environment, and the impact of human population on the environment. #### 2. Course Size and Credits: | Number of Credits | 02 | |--------------------------------------|-------------------------------| | Total Hours of Classroom Interaction | 30 | | Number of tutorial Hours | 00 | | Number of Semester Weeks | 16 | | Department Responsible | Biotechnology | | Course Marks | 50 | | Pass Requirement | As per university regulations | | Attendance Requirement | As per university regulations | # Teaching, Learning and Assessment ## 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Illustrate the multidisciplinary nature of environmental studies and recognize the need for public awareness. - CO 2. Explain the various natural resources and their associated problems, ecosystem, and environmental pollution. - CO 3. Analyse the concept of ecosystem and classify various types. - CO 4. Compare biodiversity at local, national and global levels. - CO 5. Discuss various social issues pertaining to environment including sustainable development and energy issues. ### 4. Course Contents ### Theory **Unit 1 Natural resources:** Forest resources: Use and over-exploitation, deforestation, Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams- benefits and problems, Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies. Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity. Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S F Control of Acolled Sciences Dean Market M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 energy sources. Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification. **Unit 2 Ecosystems:** Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystem: Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems (ponds, streams, lakes, rivers, ocean estuaries). **Unit 3 Biodiversity and its conservation:** Definition: genetic, species and ecosystem diversity, Biogeographical classification of India, Value of biodiversity: consumptive use, productive use, social, ethical aesthetic and option values Biodiversity at global, national and local levels, India as a mega- diversity nation, Hot-spots of biodiversity, Threats to biodiversity: habitat loss, poaching of wildlife, man wildlife conflicts, Endangered and endemic species of India, Conservation of biodiversity: In-situ and Ex- situ conservation of biodiversity. **Unit 4 Environmental Pollution:** Definition, causes, effects and control measures of: Air pollution, Water pollution, Soil pollution, Marine pollution, Noise pollution, Thermal pollution, Nuclear pollution, Solid waste management: Causes, effects and control measures of urban and industrial wastes, Role of an individual in prevention of pollution. Unit 5 Disaster management: floods, earthquake, cyclone and landslides **Unit 6 Social Issues and the Environment:** From unsustainable to sustainable development, Urban problems and related to energy, Water conservation, rain water harvesting, watershed
management, Resettlement and rehabilitation of people; its problems and concerns. Human Health: Antibiotic production, Molecular diagnostics, recombinant vaccines, gene therapy, HGP and its applications. **Unit 8 Environmental ethics:** Issues and possible solutions, climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, Case studies, Wasteland reclamation, Consumerism and waste products, Environmental Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and control of Pollution) Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation, Public awareness. Human Population and the Environment: Population growth, variation among nations, Population explosion. Page 64 of 211 Dean - Academics Dean - Academics A.S. Finalsk University of Applied Sciences Bangalore - 560 054 Final Approval by the Academic Council in its 31st meeting held on 22st March 2024 Shruta daltur Department of Blotochaplany Ramalah University of Assistantian # 5. CO-PO PSO Mapping: | | ğ | P 02 | PO3 | ğ | ă | 8 | PO7 | P08 | <u>6</u> | PO10 | P011 | P012 | PS01 | PS02 | PS03 | |------|---|-------------|-----|---|----------|---------|---------------|--------|----------|---------|-------|---------|------|------|------| | CO-1 | 3 | | | | 1 | | | - | 2 | 3 | | | 3 | 1 | 1 | | CO-2 | 3 | - | * | - | 1 | 7.50 | (5 4) | - | 2 | 3 | - | - | 3 | 1 | | | CO-3 | 3 | _0 | | - | 1 | 3.50 |) Page | - | 2 | 3 | - | - | 3 | 1 | | | CO-4 | 3 | - | • | - | 3 | 3 | 3 | 1 | 3 | 3 | 1 | - | 3 | 1 | 1 | | CO-5 | 3 | - | • | - | 3 | 201 | 1.5 | 1 | 3 | 3 | 1 | - | 3 | 1 | 3 | | | | | - | 3 | : High I | nfluenc | e, 2: N | oderat | e Influe | ence, 1 | Low I | nfluenc | è | | | # 6. Course Teaching and Learning Methods: | eaching and Learning Methods | Duration in hours | Total Duration in
Hours | | | | | | |---|-------------------|----------------------------|--|--|--|--|--| | Face to Face Lectures | | | | | | | | | Demonstrations | | | | | | | | | Demonstration using Videos | 02 | 1 | | | | | | | Demonstration using Physical Models / Systems | | 03 | | | | | | | 3. Demonstration on a Computer | | | | | | | | | Numeracy | | | | | | | | | 1. Solving Numerical Problems | | 1 | | | | | | | Practical Work | | | | | | | | | 1. Course Laboratory | 25 | 1 | | | | | | | 2. Computer Laboratory | |] | | | | | | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | | | | | | 4. Clinical Laboratory | | | | | | | | | 5. Hospital | | | | | | | | | 6. Model Studio | | | | | | | | | Others | — VA | | | | | | | | Case Study Presentation | | | | | | | | | 2. Guest Lecture | | | | | | | | | 3. Industry / Field Visit | | | | | | | | | 4. Brainstorming Sessions | | Ĭ. | | | | | | | 5. Group Discussions | | | | | | | | | Discussing Possible Innovations | | | | | | | | | erm Test and Written Examination | | 02 | | | | | | | Total Duration in Hours | | 30 | | | | | | ### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M.S. Ramaian University of Applied Science Page 65 of 21 1 Dean - Color of Applied Sciences Bangalore - 560 054 The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | CE (60% Welghtage) | | |------|--------------------------|-----------------| | | | SEE | | | SC Innovative assignment | (40% Weightage) | | | 30 Marks | 20 Marks | | CO-1 | Х | X | | CO-2 | X | Х | | CO-3 | X | X | | CO-4 | | Х | | CO-5 | | X | The Course Leader assigned to the course, in consultation with the Head of the Department, shall provide the focus of course outcomes in each component assessed in the above template at the beginning of the semester. Course reassessment policies are also presented in the Academic Regulations document. # 8. Achleving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | How imparted during the course | | |------|------------------------------------|---|--| | 1 | Knowledge | Classroom lectures | | | 2 | Understanding | Classroom lectures, Self-study | | | 3 | Critical Skills | Assignment | | | 4 | Analytical Skills | Assignment | | | 5 | Problem Solving Skills | Assignment, Examination | | | 6 | Practical Skills | Assignment | | | 7 | Group Work | total Control | | | 8 | Self-Learning | Self-study | | | 9 | Written Communication Skills | Assignment, Examination | | | 10 | Verbal Communication Skills | - | | | 11 | Presentation Skills | - | | | 12 | Behavioral Skills | _ | | | 13 | Information Management | Assignment | | Page 66 of 211 Doan - Academies M.S. Ramaich University of Applied Sciences Bangalore - 560 054 | 14 | Personal Management | | |----|---------------------|--| | 15 | Leadership Skills | | #### 9. Course Resources # a. Essential Reading - 1. Bharucha, E., 2004, Environmental Studies, New Delhi: University Grantš. - 2. Ahluwalia, V.K., 2013, Environmental Studies: Basic concepts, The Energy and ResourcesInstitute (TERI). ## b. Recommended Reading 1. Jadhav, H., Bhosale, V.M., 1995, Environmental Protection and Laws, Delhi:Himalaya Publishing House. ## c. Magazines and Journals 1, https://www.omicsonline.org/environmental-sciences-journals-impact-factor-ranking.php ### d. Websites 1. https://www.sciencedaily.com/news/earth_climate/environmental_science/ ## e. Other Electronic Resources 1. http://www.globalissues.org/issue/168/environmental-issues Faculty of Life & Ailied Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 integrally of Applied Sciences Ecngaloro - 560 054 M.S. Ramaiah Univesity of Applied Sciences Bangalore - 560 054 | Course Title | Health and well being | | |--------------|--|--| | Course Code | AHU101A | | | Department | Allied Health Sciences | | | Faculty | Faculty of Life and Allied Health Sciences | | # 1. Course Summary The course is intended to introduce the concept of health and wellbeing and the ways in which it could be achieved through integrative lifestyle. Students undergo various health issues during their student period. Hence, it is imperative for them to maintain optimum health through proper diet, healthy lifestyles, and adequate physical activity. This course will provide simple and practical guidance to the students with latest scientific evidence in the field of lifestyle medicine (modern medicine), Ayurveda, and Yoga, and Meditation. The course also intends to equip students with handy tool as a continuous resource to facilitate lifestyle changes. The course aims to provide knowledge to students to enhance health and wellbeing through integrative lifestyle. ## 2. Course Size and Credits: | Number of Credits | 02 | | | | | | |--------------------------------------|--|--|--|--|--|--| | Total Hours of Classroom Interaction | 15 | | | | | | | Number of tutorial Hours | 15 | | | | | | | Number of Semester Weeks | 16 | | | | | | | Department Responsible | Allied Health Sciences (Division of Integrative Health Sciences) | | | | | | | Course Marks | 50 | | | | | | | Pass Requirement | As per university regulations | | | | | | | Attendance Requirement | As per university regulations | | | | | | ### Teaching, Learning and Assessment ## 3. Course
Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. To understand the definitions and scope of health, wellbeing and quality of life, and how they are changing in current times. - CO 2. To understand the relationship between lifestyles and health and wellbeing; and science of Integrative Lifestyle based on modern and traditional approaches. - CO 3. To apply tools and methods related to different aspects of Integrative Lifestyle. - CO 4. To apply the concepts of comprehensive Integrative Lifestyle for improving health and wellbeina. ### 4. Course Contents ### Theory Department of Biotechnology Unit 1 Health, wellbeing, and integrative lifestyle: Definitions, determinants, and dimensions, changing paradigms of lifestyles, reasons for change in lifestyle paradigms. effects of changing lifestyles on health and wellbeing, understanding integrative lifestyle Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Dean - Academics M.S. Kamaiah University of Applied Sciences Rangalore - 560 054 (definition and components). **Unit 2 Science and practice of healthy lifestyle**: Nutrition: Energy, metabolism, healthy and balanced diet, Calories, understanding through charts and scales, Healthy sleep: Science of sleep, importance, sleep hygiene, Physical activity and its benefits, Substance use (tobacco, alcohol), healthy habits and healthy lifestyles, Stress management and Sleep hygiene as part of Healthy lifestyle. **Unit 3 Science and practice of Ayurvedic lifestyle:** Individual's unique body – mind constitution, Variations in individual's constitutions (diurnal effects, seasonal effects, age related effects and effects of food), Recommendations (Daily, Seasonal) for Ayurvedic lifestyle customized to individual constitution. **Unit 4 Philosophy, Science and Practice of Yoga based lifestyle:** Philosophy and Science of Yoga and Meditation, Practical demonstration of simple yoga techniques, Heartfulness meditation and supportive practices demonstration. # 5. CO-PO PSO Mapping: | | 5 | P02 | នួ | ğ | 50 | 8 | P07 | 8 | 80 | P040 | P041 | P012 | PSO1 | PSO2 | 500 | |------|-----|-----|----|----|--------|---------|---------|---------|---------|---------|----------|---------|------|------|-----| | CO-1 | - | - | * | | - | | - | - | 2 | - | | 2 | - | | | | CO-2 | 1 - | - | | - | - | :*: | - | | 2 | - | - | 2 | | - | | | CO-3 | - | - | - | - | - | 959 | - | | 2 | - | | 2 | ÷ | | | | CO-4 | T - | - | - | - | - | 020 | - | - | 2 | - | - | 2 | | - | | | | 1 | | | 3: | High I | nfluenc | e, 2: N | loderat | e Influ | ence, 1 | : Low li | nfluenc | e | | - | # 6. Course Teaching and Learning Methods: | eaching and Learning Methods | Total Duration in
Hours | | |---|----------------------------|----| | Face to Face Lectures | 10 | | | Demonstrations | | | | Demonstration using Videos | | | | 2. Demonstration using Physical Models / Systems | 02 | 02 | | 3. Demonstration on a Computer | | | | Numeracy | | | | 1. Solving Numerical Problems | | | | Practical Work | | | | 1. Course Laboratory | | | | 2. Computer Laboratory | | | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | | | 5. Hospital | | | | 6. Model Studio | | | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Rameion University of Applied Sciences Bangelore - 560 054 Page 69 of 211 Academics M.S. Ramanh University of Applied Sciences Rangalore - 560 054 | Total Duration in Hours | 30 | | | |----------------------------------|----|----|--| | erm Test and Written Examination | 1. | 05 | | | Discussing Possible Innovations | | | | | 5. Group Discussions | 04 | 1 | | | Brainstorming Sessions | 02 | | | | 3. Industry / Field Visit | | | | | 2. Guest Lecture | 03 | 13 | | | Case Study Presentation | 02 | 1 | | | Others | | | | ## 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | CE (60% | SEE
(40% Weightage | | | |------|---|-----------------------------|----------|--| | | SC1
(Practical
Assessment)
30% | SC2
(Assignments)
30% | | | | | 30 Marks | 30 Marks | 50 Marks | | | CO-1 | | | Х | | | CO-2 | | | X | | | CO-3 | X | Х | X | | | CO-4 | Х | | | | The Course Leader assigned to the course, in consultation with the Head of the Department, shall provide the focus of COs in each component of assessment in the above template at the beginning of the semester. The overall 40% is required to clear the course that incudes CE and SEE components. Course reassessment policies are presented in the Academic Regulations document. Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Page 70 of 211 Dean - Academics M.St Ramulal, University of Applied Sciences Bangalore - 5, 2,054 ## 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | 3.No | Curriculum and Capabilities Skills | How imparted during the course | | | | | | | | |------|------------------------------------|---|--|--|--|--|--|--|--| | 1 | Knowledge | Classroom lectures | | | | | | | | | 2 | Understanding | Classroom lectures, Group discussions | | | | | | | | | 3 | Critical Skills | | | | | | | | | | 4 | Analytical Skills | Classroom lectures, Activities, Group discussions
Assignment | | | | | | | | | 5 | Problem Solving Skills | _ | | | | | | | | | 6 | Practical Skills | Classroom lectures, Activities, Group discussions
Assignment | | | | | | | | | 7 | Group Work | Course work, Practice, Group discussions, Assignment | | | | | | | | | 8 | Self-Learning | Course work, Practice, Group discussions, Assignment | | | | | | | | | 9 | Written Communication Skills | Course work, Practice, Group discussions, Assignment | | | | | | | | | 10 | Verbal Communication Skills | Course work, Practice, Group discussions, Assignment | | | | | | | | | 11 | Presentation Skills | - | | | | | | | | | 12 | Behavioral Skills | Course work, Practice, Group discussions, Assignment | | | | | | | | | 13 | Information Management | Assignment | | | | | | | | | 14 | Personal Management | - | | | | | | | | | 15 | Leadership Skills | - | | | | | | | | ### 9. Course Resources ## a. Essential Reading - Science and practice of Integrative Health and Wellbeing Lifestyle Simple Heartfulness Practices Chandola H M. Lifestyle disorders: Ayurveda with lots of potential for prevention. Year: 2012 / Volume: 33 | Issue Number: 3 / Page: 327-327 - 2. Cohen, M. Challenges and Future Directions for Integrative Medicine in Clinical - Practice. Evid-Based-Integrative-Med2. 117-122 (2005). - 4. Diet, nutrition and the prevention of chronic diseases: report of a Joint WHO/FAO Expert Consultation. WHO Technical Report Series, No. 916. Geneva: World Health Organization; 2003. - 5. Horst R, Jaeger M, Smeekens S et al. Host and Environmental Factor Influencing Individual Human Cytokine Responses. 2016, Cell167, 1111-1124 - ∘ 6. Irwin, M., Opp, M. Sleep Health: Reciprocal Regulation of Sleep and Innate Immunity. Neuropsychopharmacol 42, 129-155 (2017) - 7. What is Integrative Healthcare? Duke Integrative Medicine. (2020),. Retrieved 23 August 2020, from https://dukeintegrativemedicine.org/ leadership-program/what-isintegrative-healthcare/ - 8. Kamlesh D Patel. The Profound Beauty of Yoga, Heartfulness Collector's Edition. December 2018 - 9. Kamlesh D Patel. Yogic Psychology. Heartfulness Collectors' edition. December 2019 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramaiah University of Applied Sciences Bangalora - Cap 034 # b. Recommended Reading - 1. Heartfulness Way Designing Destiny Disease burden and mortality estimates. (2020). Retrieved 23 August 2020, from https://www.who.int/healthinfo/global burdendisease/estimates/en/index1.html - 2. Garaulet, M., Gómez-Abellán, P., Alburquerque-Béjar, J. et al. Timing of food intake predicts weight loss effectiveness. Int Obes 37, 604-611 (2013) - 3. H. (2020). The 4 most important types of exercise Harvard Health. Retrieved 23 August 2020, from https://,www.health.harvard.edu/exercise-and-fitness/the-4-most-important-types-of-exercise - Johnstone AM, Murison SD, Duncan JS, Rance KA, Speakman J. Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. Am J Clin Nutr. 2005 Nov; 82(5):941-8 - 5. Medicine, U. (2020). Why does Integrative Medicine Matter? Explore Integrative Medicine. Retrieved 23 August 2020, from https://exploreim.ucla.edu/video/why-integrative-medicine- matters/ - 6. Megari K. Quality of life in chronic disease patients. Heal Psychol Res. 2013 - 7. PILCHER et al. Sleep quality versus sleep quantity: relationships between sleep and measures of health, well-being and sleepiness in college students. Journal of Psychosomatic Research, Vol. 42, No. 6, pp. 583 596, 1997 - 8. Rebel DK, Greeson JM, Brainard GC, Rosenzweig S. Mindfulness-based stress reduction and health-related quality of life in a heterogeneous patient population. Gen Hosp Psychiatry. 2001 - 9. Tolahunase, Madhuri R. et al. 'Yoga- and Meditation-based Lifestyle Intervention Increases Neuroplasticity and Reduces Severity of Major Depressive Disorder: A Randomized Controlled Trial'. 1 Jan. 2018; 423 442. - 10. Types of Stressors (Eustress vs. Distress).
(2020). Retrieved 23 August 2020, from https://www.mentalhelp.net/articles/ types-of-stressors-eustress-vs- distress/ - 11. Vasant Lad. The Complementary Book of Ayurvedic Home Remedies. London. 2006. - 12. Wang C (2014). Challenges for the Future of Complementary and Integrative Care. Health Care Current Reviews 2: e102.doi:10.4172/2375- 4275.1000e102 Faculty of Life & Allied Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Tref Applied Sciences Page 72 of 211 Dean - Academics M.S. Pagnalah University of Applied Sciencer Bangalore - 560 054 M. S. Ramaiah University of Applied Sciences Course Specifications of B.Sc. (Hons) in Biotechnology Programme Code: 018 SEMESTER 3 Department of Biotechnology Faculty of Life and Allied Health Sciences M S Ramaiah University of Applied Sciences Faculty of Life & Allied Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramelah University of Applied Sciences Bangalore - 500 054 Dean-Academics M.S. Ramaiah Univesity of Applied Sciences Bongalaro - 560 054 | Course Title | General Chemistry 2 | | |--------------|--|--| | Course Code | BTC201A | | | Department | Biotechnology | | | Faculty | Faculty of Life and Allied Health Sciences | | ### 1. Course Summary This course aims to train students with the concepts and principles of coordination chemistry, miscibility and properties of liquids & liquid mixtures along with the chemistry of alkanes, alkenes, alkynes, cycloalkanes and aromatic compounds. The laboratory component of the course aims to train students on estimation, preparation and analysis of various chemical species. Students will be familiarized with the detailed concepts of classification and characteristic features of coordination compounds. Students will be taught the concepts of chemical kinetics, ideal and non-ideal solutions. The students will be trained to analyse kinetics of chemical reactions. They will be acquainted with theories to predict the order, molecularity and rate constants. Students will be taught the chemistry of aliphatic and aromatic hydrocarbons. Students will be able to explain properties and nature of various chemical compounds by performing experiments involving quantitative analysis, estimation and calculations. Students will be trained to analyse, identify the chemical species, and further interpret the data to enter in laboratory record book. ### 2. Course Size and Credits: | Number of Credits | 5 | | | | |--------------------------------------|-------------------------------|--|--|--| | Total Hours of Classroom Interaction | 45 | | | | | Number of laboratory Hours | 60 | | | | | Number of Semester Weeks | 16 | | | | | Department Responsible | Biotechnology | | | | | Course Marks | 100 | | | | | Pass Requirement | As per university regulations | | | | | Attendance Requirement | As per university regulations | | | | ## Teaching, Learning and Assessment ## 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Describe the properties of liquids, liquid mixtures and hydrocarbons, Raoult's law, Nernst's distribution law. - CO 2. Classify the coordinating ligands, ideal and non-ideal solutions based on their chemical properties, chemical reactions based on order and molecularity and aliphatic/aromatic hydrocarbons. - CO 3. Explain the concepts of coordination complexes, Werner's theory, Spectrochemical series, rate of reactions, miscibility of liquids, CST, solubility concept and chemical reactivity. - CO 4. Determine order, molecularity of chemical reactions, stability of complexes and CFSE. Page 74 of 211 Dean - Academics M.F.:Remaish University of Applied Science Bangalore - 560 004 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramaien University of Applied Sciences Bangatora - 560 054 - CO 5. Interpret the relation between nature of bonding and properties of coordination compounds, temperature and miscibility of liquid mixtures & chemical/physical properties of hydrocarbons. - CO 6. Conduct experiments as per the standard procedures and tabulate the measured values/results to Interpret and draw conclusions. - CO 7. Develop a laboratory report as per the prescribed format ### 4. Course Contents ## Theory Unit 1 Coordination Compounds: Coordination compounds, ligands and ambidentate ligands, classification of ligands (mono, bi, tri, tetra, penta and hexa dentate ligands), nomenclature, coordination number, stability of complexes and factors contributing to the stability, Valence bond theory postulates and limitations, Wemer's theory and its limitations Unit 2 CFT and spectrochemical series of coordination compounds: Crystal field theory for octahedral, tetrahedral and square planar complexes, crystal field splitting and crystal field stabilization energies, limitations of Crystal field theory and limitations, factors affecting Spectrochemical series Unit 3 Chemicals Kinetics: Rate, rate law, order and molecularity of a reaction, rate constants of first and second order reactions, approximation methods, half-life period, influence of temperature on reaction rate, activation energy, determination of order of a reaction. Catalysis, Enzyme catalysis, effect of temperature on enzyme catalysis and Michaelis-Menten equation Unit 4 Liquids and liquid mixtures: Review of Raoult's law, ideal and non-ideal solutions. Completely miscible liquids-Fractional distillation, azeotropic mixtures -examples. Completely miscible liquids- Critical solution temperature (Three types), examples, Effect of addition of salt on CST of phenol- water system, Distribution law-partition coefficient and condition for validity of distribution of distribution law, Numerical problems Unit 5 Chemistry of alkanes, alkenes, alkynes and cycloalkanes: Sources, preparations, physical properties and chemical reactions of alkanes, alkynes and cycloalkanes. Wurtz reaction, Kolbe's synthesis and use of Grignard reagent. Saytzeff's rule, oxidation & reduction chemistry, Ozonolysis, Baeyer's strain theory and its limitations. Alkyl Halides: Nucleophilic Substitution, reactions of alkenes and alcohols. Elimination versus substitution Unit 6 Aromatic Hydrocarbons and Aryl Halides: Sources, preparations, physical properties and chemical reactions, Electrophilic substitution: nitration, halogenation and sulfonation. Friedel- Craft's reaction, Side chain oxidation of alkyl benzenes. Aromatic nucleophilic substitution (replacement by –OH group) and effect of nitro substituent. Benzyne Mechanism: KNH2/NH3 (or NaNH2/NH3) ### Practical - 1. Determination of relative viscosity coefficient of given liquid using Oswald's viscometer. - 2. Colorimetric determination of concentration of metal ion by complexing and using Beer- - 3. Solid phase synthesis of trans- bis glycinato copper (II) complex Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024. MS Raman Shruti Malbyn Bangalore - 560 054 M.S. Ramaiah Ulivesity of Applied Sciences Bangalore - 560 054 - 4. Preparation of K3[Cr(C2O4)3] potassium tris-oxalato chromate (III) trihydrate complex - 5. Preparation of manganese dioxide (MnO2) nanoparticle - 6. Preparation of lyophilic and lyophobic starch sols - Preparation of Iodoform - 8. Qualitative analysis: Identification of cations and anions in a mixture of salts containing not more than four ions (Two cations and two anions) (Five combinations to be analysed) Cations: Pb $^{2+}$, Fe $^{2+}$ or Fe $^{3+}$, Al $^{3+}$, Zn $^{2+}$, Mn $^{2+}$, Ba $^{2+}$, Sr $^{2+}$, Ca $^{2+}$, Mg $^{2+}$, NH4; K $^+$ Anions: CO3 , S 2 , CH $_3$ COO-, NO3 , CF, Br', F', SO4 , C $_2$ O $_4$ ## 5. CO-PO PSO Mapping: | | PQ | PO2 | PO3 | 5 | POS | 90
80 | 8 | 5 | 8 | P040 | | P012 | PSO | PS02 | 8 | |------|-----|-----|-----|---|-----|----------|---|---|-----|------|---|------|-----|------|---| | CO-1 | 2 | | - | - | 2 | 2 | | | | - | 2 | 2 | 2 | 2 | | | CO-2 | 3 . | - 1 | - | | 1 | 2 | - | - | | - | 1 | 2 | 2 | 2 | | | CO-3 | 3 | - | - | - | 2 | 2 | - | - | (2) | - | 2 | 3 | 3 | 2 | | | CO-4 | 2 | - | - | - | 3 | 3 | - | - | - | - | 3 | 3 | 3 | 3 | | | CO-5 | 2 | - | - | - | 2 | 3 | - | - | 48 | - | 3 | 3 | 2 | 3 | | | CO-6 | 3 | | 3 | - | 2 | 2 | 1 | 1 | - | 1 | 2 | 3 | 2 | 3 | | | CO-7 | 3 | - | 3 | | 2 | 2 | 1 | 1 | - | 1 | 3 | 2 | 2 | 2 | | # 6. Course Teaching and Learning Methods: | eaching and Learning Methods | Total Duration in
Hours | | |---|----------------------------|-----| | Face to Face Lectures | | 36 | | Demonstrations | | | | Demonstration using Videos | 02 | 1 | | Demonstration using Physical Models | 01 | 03 | | 3. Demonstration on a Computer | | 1 | | Numeracy | | | | Solving Numerical Problems | | 1 | | Practical Work | | | | 1. Course Laboratory | 56 | 1 | | 2. Computer Laboratory | | 1 | | 3. Engineering Workshop / Course/Workshop / Kitchen | | 1/2 | | 4. Clinical Laboratory | | 56 | | 5. Hospital | | 1 | | 6. Model Studio | | 1 | | Others | | | | 1. Case Study Presentation | | 1 | | 2. Guest Lecture | | 1 | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 VI S Ranfash Water Walter lied Sciences Bengaloro - 560 054 Dean - Academics M.S. Remailan University of Applied Sciences Bangalore - 560 054 | otal Duration in Hours | | 105 | |----------------------------------|-------|-----| | erm Test and Written Examination | 04+04 | | | Discussing Possible Innovations | 01 | | | 5. Group Discussions | 01 | | | Brainstorming Sessions | | | | 3. Industry / Field Visit | 02 | | ### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to
the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | | SEE
(40% Weightage) | | | | | |------|------------------|-----------------------------------|-----------------------------------|-----------------|-----------|--| | | SC1 | SC2 | SC3 | SEE | SEE | | | | (Term Tests) 30% | (Innovative + Lab assignment) 10% | (Written + Lab
Assignment) 20% | (Theory)
25% | (Lab) 15% | | | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | 30 Marks | | | CO-1 | | | | | | | | CO-2 | Х | Х | | Х | | | | CO-3 | Х | Х | | Х | | | | CO-4 | | | X | Х | | | | CO-5 | X | | X | Х | | | | CO-6 | Х | | | Х | | | | CO-7 | | Х | Х | | Х | | ### 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | Capabilities Skills How imparted during the course | | | | | | |------|------------------------------------|--|--|--|--|--|--| | 1 | Knowledge | Classroom lectures, Assignments | | | | | | | 2 | Understanding | Classroom lectures, Assignments | | | | | | | 3 | Critical Skills | Classroom lectures, Assignments | | | | | | | 4 | Analytical Skills | Classroom lectures, Assignments | | | | | | | 5. | Problem Solving Skills | - | | | | | | | 6 | Practical Skills | - | | | | | | | 7 | Group Work | Assignment/ Class Presentations | | | | | | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramaiah University of Applied Sciences Bencistra - 080 054 M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 | 8 | Self-Learning | Assignment, examination | |----|------------------------------|--| | 9 | Written Communication Skills | Assignment | | 10 | Verbal Communication Skills | Class presentations | | 11 | Presentation Skills | Class presentations | | 12 | Behavioral Skills | - | | 13 | Information Management | Assignment | | 14 | Personal Management | Assignment, Examination | | 15 | Leadership Skills | Effective management of learning, time management, achieving the learning outcomes | #### 9. Course Resources ## a. Essential Reading - 1. Lab Manual - 2. Puri, B.R., Sharma, L.R., Pathania, M.S., 2017, Principles of Physical Chemistry, 47th Edition, Vishal Publishing Co. - 3. Puri, B.R., Sharma, L.R., Kalia, K.C., 2017, Principles of Inorganic Chemistry, 33rd Edition, Milestone Publishers and Distributors/Vishal Publishing Co. - Bahl, B. S and Arun Bahl (2014) Advanced Organic Chemistry. 7th Edition. Bangalore, S. Chand & Company Ltd - 5. Kalsi, P.S., 1996, Organic Reactions and Their Mechanisms, New Delhi, New Age International. - 6. Vogel, A.I., Jeffery, G.H., 1989, Vogel's textbook of quantitative chemical analysis, Longman Scientific & Technical. ### b. Recommended Reading - 1. Soni P.L., 1983, Textbook of Physical Chemistry, 14th Edition, New Delhi, Sultan Chand & Sons - 2. Atkins, P. De Paula, J., 2014, Atkins' Physical chemistry, 10th Edition, Oxford University Press. - 3. Smith, M. B., 2013, March Advanced Organic Chemistry: Reaction S, Mechanism, And Structure.7th Edition. New Jersey USA, Wiley ### c. Magazines and journals - 1. https://ccj.springeropen.com/ - 2. https://www.elsevier.com/physical-sciences/chemistry/chemistry-journals ### d. Websites - 1. http://chemguide.co.uk/ - e. Other electronic resources - 1. http://www.chemistryonline.com/slides.htm Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Rematch Walture Sciences Bangalone - 560 pt.4 Page 78 of 211 Dean - Academics M.S. Rygalah Univesity of Applied Sciences Bangalore - 560 054 | Course Title | Principles of Genetics | |--------------|--| | Course Code | BTC202A | | Department | Biotechnology | | Faculty | Faculty of Life and Allied Health Sciences | ## 1. Course Summary The aim of this course is to familiarize students with the fundamentals of Genetics. Students will be introduced to basic principles of heredity. They will be exposed to concepts that deviate from the classical inheritance patterns. They will also be introduced to aberrations in the chromosomal composition and its impact on the health of an organism. The course also aims to train students in the practical aspects of Cytogenetics. The students will be trained to culture and study model organisms, prepare biological materials to study chromosomes and apply theoretical concepts to solve problems. #### 2. Course Size and Credits: | Number of Credits | 5 | | | | |--------------------------------------|-------------------------------|--|--|--| | Total Hours of Classroom Interaction | 45 | | | | | Number of laboratory Hours | 60 | | | | | Number of Semester Weeks | 16 | | | | | Department Responsible | Biotechnology | | | | | Course Marks | 100 | | | | | Pass Requirement | As per university regulations | | | | | Attendance Requirement | As per university regulations | | | | ### Teaching, Learning and Assessment ## 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Define basic concepts in Mendelism and non-Mendelian inheritance - CO2. Explain principles of heredity at the organismal and population level - CO3. Illustrate linkage and mechanism of crossing over - CO4. Distinguish types of chromosomal variations - CO5. Examine utility of model organisms in understanding genetic principles - CO6. Demonstrate experimental methods using model organism - CO7. Apply principles of genetics to solve problems Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Dean - Academics M.S. Ramaiah University & Applied Sciences Bangalore - 560 054 Department of Enrichmology MS Remaich University of Applied Sciences #### 4. Course Contents ### Theory **Unit 1 History of Genetics, Mendelism, Chromosome Theory and deviations from Mendelism:** History of Genetics, Mendel's principles - Dominance, segregation, independent assortment, Chromosome Theory of Heredity (Sutton-Boveri), Inheritance patterns (Sexlinked and Autosomal inheritance). Deviations from Mendelism - Multiple allele (Blood group), Genetic interaction, Epistasis interactions, non-Epistatic inter- allelic genetic interactions, Atavism/Reversion, Penetrance and expressivity, complementary and supplementary gene interactions, multi-factorial inheritance, Cytoplasmic inheritance. **Unit 2 Population Genetics:** Populations, Gene pool, Gene frequency; Hardy-Weinberg Law; concepts and rate of change in gene frequency through natural selection, migration, and random genetic drift; Speciation; Allopatricity and Sympatricity **Unit 3 Linkage and crossing over:** Chromosome theory of Linkage, kinds of linkage, linkage groups, types of Crossing over, mechanism of Meiotic Crossing over, theories about the mechanism of Crossing over, cytological detection of Crossing over, significance of Crossing over. **Unit 4 Chromosomal variations and Sex determination:** Human Karyotype; Structural and numerical chromosomal aberrations - Deletion, Duplication, Inversion, Translocation, Position Effect; Euploidy; Aneuploidy; allosomes and autosomes; Disorders associated with chromosomal aberrations - Allosomal and Autosomal. **Unit 5 Drosophila Genetics:** *Drosophila melanogaster* as a genetic model – life cycle, Early experiments, Discovery of sex-linked inheritance and crossing-over, Identification, naming and utility of mutants, mutant generation, Genetic screens, unusual interphase chromosomes, non-disjunction and its relation to chromosomal aneuploidy #### **Practical** - 1. Culturing and Handling of Drosophila - 2. Study of Drosophila Life cycle and Sexual dimorphism - 3. Study of Drosophila eye mutants - 4. Study of Drosophila body color mutants - 5. Study of Drosophila wing mutants - 6. Salivary gland dissection from third instar larva of Drosophila - 7. Preparation of temporary squash of Drosophila salivary glands to observe polytene chromosome. - 8. Study of multiple allelism: Human ABO blood typing - 9. Study of translocation: Meiosis in Rhoeo discolor - 10. Solve Problems applying genetic principles. - 11. Design an experiment to illustrate mendelian principles of monohybrid inheritance. Page 80 of 211 Dean - Academics M.S. Ramalah University of Applied Sciences Page 1650, 550, 054 ## 5. CO-PO PSO Mapping: | 3 | • | - | i | - | • | - | - | 9 | - | - | | 3 | +- | ╁ | |---|-----|------------|---------------------|-------------------------|-------------------------|-----------------|-----------------------------|---------------|---|-------------------|------------|-----|---|---| | | | - | | | - | | | | 1 | | 100 | , v | 1 | 1 | | 3 | _ | | | - | | - | - | :2 | - | - | | 3 | 1 - | Г | | - | - | - | | - | | - | - | .* | - | - | | 3 | - | Т | | 3 | - | - | | - | | - | - | | - | - | (<u>*</u> | 3 | - | | | 3 | = | - | | - | 3.50 | - | - | | - | - | 2.53 | 3 | 2 | Т | | 3 | -] | 2 | | - | | 1 | | 1 | 1 | - | -1 | 3 | 1 | Г | | 3 | - | 1 | - | 1 | 112 | - | - | ः | - | - | | 3 | 1 | T | | | 3 | 3 -
3 - | 3
3 - 2
3 - 1 | 3
3 - 2 -
3 - 1 - | 3
3 - 2
3 - 1 - 1 | 3 3 - 2 1 - 1 - | 3 1
3 - 2 1
3 - 1 - 1 | 3 3 - 2 1 - 1 | 3 | 3 3 - 2 1 - 1 1 3 | 3 | 3 | 3 - - - - - 3 3 - 2 - - 1 - 1 1 - 1 3 | 3 - - - - - - 3 2 3 -
2 - - 1 - 1 1 - 1 3 1 3 - 1 - 1 - - - - - - 3 1 | ## 6. Course Teaching and Learning Methods: | eaching and Learning Methods | Total Duration in
Hours | | |---|----------------------------|-------| | Face to Face Lectures | 36 | | | Demonstrations | * | | | Demonstration using Videos | 02 | 1 | | Demonstration using Physical Models | | 05 | | Demonstration on a Computer | | | | Numeracy | | | | 1. Solving Numerical Problems | | | | Practical Work | | | | 1. Course Laboratory | 56 | | | 2. Computer Laboratory | | | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | 56 | | | 5. Hospital | | | | 6. Model Studio | | | | Others | " | | | Case Study Presentation | | 1 | | 2. Guest Lecture | | 1 | | 3. Industry / Field Visit | | 1 | | 4. Brainstorming Sessions | |] | | 5. Group Discussions | | | | Discussing Possible Innovations | | | | erm Test and Written Examination | 191 | 04+04 | | otal Duration in Hours | | 105 | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Department of Applied Sciences Bangalore - 560 054 Page 81 of 211 Dean - Academics M. Academics M. Academics M. Academics Bangalore - 560 054 #### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | | SEE
(40% Weightage) | | | | |------|------------------|-----------------------------------|-----------------------------------|-----------------|-----------| | | SC1 | SC2 | SC3 | SEE | SEE | | | (Term Tests) 30% | (Innovative + Lab assignment) 10% | (Written + Lab
Assignment) 20% | (Theory)
25% | (Lab) 15% | | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | 30 Marks | | CO-1 | X | Х | | X | | | CO-2 | X | Х | | Х | | | CO-3 | X | | | Х | | | CO-4 | X | | Х | Х | | | CO-5 | | | Х | Х | | | CO-6 | | Х | Х | | Х | | CO-7 | | | Х | | X | ## 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | How imparted during the course | | |------|------------------------------------|--------------------------------|--| | 1 | Knowledge | Classroom lectures | | | 2 | Understanding | Classroom lectures, self-study | | | 3 | Critical Skills | Assignments | | | 4 | Analytical Skills | Assignments | | | 5 | Problem Solving Skills | Assignments, examination | | | 6 | Practical Skills | Assignments | | | 7 | Group Work | | | | 8 | Self-Learning | self-study | | | 9 | Written Communication Skills | Assignment, examination | | | 10 | Verbal Communication Skills | - | | | 11 | Presentation Skills | | | | 12 | Behavioral Skills | Assignment | | | 13 | Information Management | - | | | 14 | Personal Management | - | | | 15 | Leadership Skills | - | | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 est Interestations (mology Bangaiore - Gay 954 Bangaiore - Gay 954 Page 82 of 211 hics hics County of Applied Sciences Bangalore - 560 054 #### 9. Course Resources ## a. Essential Reading - Laboratory manual. - Klug, W.S., Cummings, M.R., Spencer, C.A., Palladino, M.A., 2016, Concepts of Genetics, 10th edition, Pearson Education India. - 3. Gardner, E.J., Simmons, M.J., Snustad, D.P., 2006, *Principles of Genetics*, 8th edition, Wiley. ## Recommended Reading - 1. Sturtevant, A.H., 1965, A History of Genetics, Harper and Row New York. - 2. Orel, V., 1996, Gregor Mendel: The First Geneticist, Oxford University Press, New York. - 3. Tamarin, R.H., 2017, Principle of Genetics, 7th Edition, McGraw Hill Education. - 4. Hart, D., and Jones, E.W., 1998, Genetics, Principles and Analysis, 4th Edition, Jones and Bartlett Publication. - Strickberger, M.W., 2015, Genetics, 3rd edition, Pearson Education IndiaSoni P.L., 1983, Textbook of Physical Chemistry, 14th Edition, New Delhi, Sultan Chand & Sons ## c. Magazines and journals 1. http://www.genetics.org/ ### d. Websites - 1. http://learn.genetics.utah.edu/ - https://ghr.nlm.nih.gov/ Faculty of Life & Allied Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Remark Use to Jackhology Bengalore - 560 054 Dean - Asademics M.S. Ramaiah Univesity of Applied Sciences Bangalore - 530 054 | Course Title | Biostatistics | | |--------------|--|--| | Course Code | BTC203A | | | Department | Biotechnology | | | Faculty | Faculty of Life and Allied Health Sciences | | ## 1. Course Summary This course aims to train students on the application of statistical methods (summarizing data and drawing valid inferences based on limited information) to biological systems. This course deals with statistical concepts and terminology and basic analytic techniques. Students will be taught the fundamental concepts in the design and analysis of biomedical studies, including the difference between observational and experimental studies, units of randomization, the comparisons of the sample with control group, and adjustments for error explaining the logic behind statistical confidence intervals and hypothesis tests. ### 2. Course Size and Credits: | Number of Credits | 3 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of laboratory Hours | 60 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | ## Teaching, Learning and Assessment ## 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Explain the use of mathematical and statistical concepts in f biological data analysis - CO2. Demonstrate the central concepts of modern statistical theory and their probabilistic foundation - CO3. Communicate the results of statistical analyses accurately and effectively - CO4. Analyze the complex statistical computations and calculations of the experimental data - CO5. Develop analytical skills to identify patterns and build practical models ### 4. Course Contents ### Theory **Unit 1 Measures of central tendency and measures of dispersion:** Statistics – Definition, Types of Data, Collection of data; Primary & Secondary data, Graphical representation of data, Measures of Central Tendency – Mean, Median, Mode, Measures of Dispersion – Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramalah University of Applied Sciences Bengaloro - 550 054 Dean - Academics M.S. Rambich University of Applied Sciences Bangalore - 560 054 Range, Quartile deviation, Mean deviation, Standard deviation, Variance, Skewness - Kurtosis **Unit 2 Correlation and regression analysis:** Correlation – Types, scatter diagram – Karl Pearson's coefficient of correlation, Spearman's Rank Correlation – Regression – Formation of Regression lines – Uses of Regression lines **Unit 3 Basics of probability:** Basics of Probability Theory – Addition & Multiplication Rule – Binomial, Poisson and Normal Distribution and their uses in biological sciences **Unit 4 Large sample test:** Methods of sampling, confidence level, critical region, testing of hypothesis and standard error, large and small sample test. Test for Mean, Small sample Tests: Student's t-test, F- test, chi-square test for goodness of fit – Analysis of variance (one-way and two-way – Basic Ideas only); Correlation and Regression- Emphasis on examples from Biological Sciences **Unit 5 Tools and Languages in Statistics:** Introduction to SAS, SPSS and R Programming and their applications in statistics ## 5. CO-PO PSO Mapping: | | 5 | P02 | S
S | PQ4 | § | 8 | P07 | 80 | P09 | PO10 | P011 | PO12 | PS01 | PS02 | PS03 | |------|---|-----|----------|---------|---------|--------|---------|----------|--------|--------|------|------|------|------|------| | CO-1 | 3 | | 1 | - | 1 | - 1 | 1 | - | 1 | 1 | - 1 | 2 | 3 | 2 | 2 | | CO-2 | 3 | - | 1 | - | 1 | - | 1 | - | 1 | 1 | - | 2 | 3 | 2 | 2 | | CO-3 | 3 | | 1 | 3 | 1 | - | 1 | | 1 | 2 | - | 2 | 3 | 3 | 2 | | CO-4 | 3 | 2. | 1 | 12 | 1 | - | 1 | | 1 | 1 | - | 3 | 3 | 2 | 2 | | CO-5 | 3 | - | 1 | - | 2 | - | 1 | - | 2 | 1 | - | 2 | 3 | 2 | 3 | | | | 3:1 | ligh Int | fluence | , 2: Mo | derate | Influen | ce, 1: L | ow Inf | luence | | | | - | | ### 6. Course Teaching and Learning Methods: | eaching and Learning Methods | Duration in hours | Total Duration in
Hours | |-------------------------------------|-------------------|----------------------------| | Face to Face Lectures | | 28 | | Demonstrations | | | | Demonstration using Videos | 02 | 1 | | Demonstration using Physical Models | | 03 | | 3. Demonstration on a Computer | | | | Numeracy | | 10 | | 1. Solving Numerical Problems 10 | | 10 | | Practical Work | | | | 1. Course Laboratory | | | Final Approval by the Academic Council in its 31st meeting held on 22rd March 2024 Dean - Acydemics M.S. Ramaiah Univesity of Applied Sciences Bangalore - 560 054 M S Ramelan Challed Sciences Bangaloro - 650 054 | otal Duration in Hours | 45 | |---|----| | erm Test and Written Examination | 04 | | Discussing Possible Innovations | | | 5. Group Discussions | | | 4. Brainstorming Sessions | | | 3. Industry / Field Visit | | | 2. Guest Lecture | | | 1. Case Study Presentation | | | Others | | | 6. Model Studio | | | 5.
Hospital | | | 4. Clinical Laboratory | | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | 2. Computer Laboratory | | ### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | | SEE | | | |------|-------------------------|--------------------------|--------------------------|-----------------| | | SC1
(Term Tests) 30% | SC2
(assignments) 10% | SC3
(Assignments) 20% | (40% Weightage) | | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | | CO-1 | Х | Х | | Х | | CO-2 | X | Х | | Х | | CO-3 | Х | X | X | Х | | CO-4 | Х | | Х | , X | | CO-5 | Х | | Х | X | ## 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | How imparted during the course | | |------|------------------------------------|--------------------------------|--| | 1 | Knowledge | Classroom fectures | | Final Approval by the Academic Council in its 31st meeting held on 22st March 2024 Page 86 of 211 Dean - Academics M.S. Barwiah University of Applied Sciences Bangatore - 566 054 | 2 | Understanding | Classroom lectures, self- study | | |----|------------------------------|---------------------------------|--| | 3 | Critical Skills | Assignments | | | 4 | Analytical Skills | Assignments | | | 5 | Problem Solving Skills | Assignment, examination | | | 6 | Practical Skills | Assignments | | | 7 | Group Work | ļ.– | | | 8 | Self-Learning | self- study | | | 9 | Written Communication Skills | Assignment, examination | | | 10 | Verbal Communication Skills | - | | | 11 | Presentation Skills | - | | | 12 | Behavioral Skills | | | | 13 | Information Management | Assignment | | | 14 | Personal Management | - | | | 15 | Leadership Skills | - | | ### 9.Course Resources ### a. Essential Reading - 1. Class notes. - 2. Khan, I.A., Khanum, A., 2004, Fundamentals of Biostatistics, Ukaaz publications, Hyderabad. - 3. Khan, I.A., Khanum, A., 2007, Biostatistics for pharmacy, Ukaaz publications, Hyderabad. - 4. Gupta, S.P., 2011, Statistical methods, 4th Edition, Sultan Chand & Sons. - 5. Sharma, A.K., 2005, Text book of Biostatistics II, DPH, New Delhi. - 6. Rastogi, V.B., 2015, Biostatistics, 3rd Edition, Medtech. - Pranab Kumar, B., 2007, Introduction to Bio-statistics, 3rd Revision, S Chand & Company. - 8. Rao, P.S.S.S., Richard, J., 2012, Introduction to Biostatistics and Research methods, 5th Edition, Prentice Hall India Learning Private Limited. - 9. Daniel, W.W., Cross, C.L., 2014, Biostatistics: Basic Concepts and Methodology for the Health Sciences, 10th Edition, Wiley. ### b. Recommended Reading - 1. Zar, J.H., 2009, Bio-statistical Analysis, 4th Edition, Pearson Education Inc., Dorling Kindersley, India, Pvt. Ltd., New Delhi. - 2. Antonisamy, B., Christopher, S., Samuel, P., 2011, Bio-Statistics Principles and Practice, ### c.Magazines and journals 1. https://academic.oup.com/biostatistics Dep Some Tolla M S Rameich University of Applied Sciences ### d. Websites Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Page 87 of 211 Dynan - Academics M.S. Ramaiah Univesity of Applied Sciences Bangalore - 560 054 1. https://www.nature.com/subjects/biostatistics ## e. Other electronic resources 1. https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statisticsspring-2014/ Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M.S. Rain Liab draivesity of Applied Science Bangalore - 560 054 | Course Title | Applications of Biotechnology in Agriculture | | |--------------|--|--| | Course Code | BTO201A | | | Department | Biotechnology | | | Faculty | Faculty of Life and Allied Health Sciences | | ## 1. Course Summary The course aims to provide an understanding of core principles and applications of agricultural Biotechnology. Students will be acquainted with basic concepts of plant growth regulators, plant tissue culture, gene transfer techniques which form the basis of agricultural biotechnology. Students also learn strategies involved in crop improvement and storage. They also will become acquainted with applications of agricultural biotechnology in the production of pharmaceuticals. ### 2. Course Size and Credits: | Number of Credits | 3 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of laboratory Hours | 0 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | ### Teaching, Learning and Assessment ## 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Identify the importance and applications of agricultural biotechnology - CO2. Describe techniques that enable agricultural biotechnology CO3. Explain strategies to enhance agronomic value of crops CO4. Discuss significance of biopesticides and biofertilizers - CO5. Summarize efforts made to utilize the plants for biopharming ## 4. Course Contents ### Theory Unit 1 Agricultural Biotechnology: History, Basic concepts, applications, significance, food security, food safety; Ethical and Environment concerns Unit 2 Methods in Agricultural Biotechnology: Plant tissue culture, applications in biotechnology; Gene transfer techniques Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 of bletechnology M S Ramaiah University of Applied M.S. Ramaiab Univ **Unit 3 Crop improvement and Transgenic crops:** Golden rice, BT crops, Roundup crops, pathogen resistant crops, Blue carnations; Post Harvest Technology - Extending shelf life of fruits; Flavr-Savr Tomato. **Unit 4 Biopesticides and Biofertilizers:** Bt Toxin, Baculovirus, Trichoderma; Nitrogen fixing organisms, Vermicompost, Significance of biopesticides and biofertilizers **Unit 5 Biopharming in plants:** Therapeutic proteins, edible vaccines, secondary metabolites. ## 5. CO-PO PSO Mapping: | | P 04 | P02 | Po3 | 절 | P05 | 8 | P07 | 8 | 8 | PO10 | Pott | P012 | PS01 | PS02 | | |------|-------------|-----|---------|--------|---------|--------|---------|----------|---------|--------|------|------|------|------|---| | CO-1 | 3 | | - | - | 1 | | - | • | | - | | 1 | 2 | 1 | H | | CO-2 | 3 | :02 | - | - | 1 | | | | | | | 1 | 2 | 1 | T | | CO-3 | 3 | 90 | | - | 1 | - | - | - | - | - | - | 1 | 2 | 1 | t | | CO-4 | 3 | - | - | - | 1 | - | - | - | | - | - | 1 | 2 | 1 | H | | CO-5 | 3 | ·*: | - | - | 1 | | - | - | - | | | 1 | 2 | 1 | H | | | | 3:1 | ligh In | luence | , 2: Mo | derate | Influen | ce, 1: l | Low Inf | luence | | | | - | _ | ## 6. Course Teaching and Learning Methods: | eaching and Learning Methods | Duration In hours | Total Duration in
Hours | |---|-------------------|----------------------------| | Face to Face Lectures | | 30 | | Demonstrations | | | | Demonstration using Videos | 06 | | | Demonstration using Physical Models | | 10 | | 3. Demonstration on a Computer | 04 | | | Numeracy | | | | Solving Numerical Problems | | | | Practical Work | | | | Course Laboratory | | 1 | | 2. Computer Laboratory | | | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | 1 | | 5. Hospital | | 1 | | 6. Model Studio | | | | Others | | | | Case Study Presentation | | 1 | | 2. Guest Lecture | | 1 | | 3. Industry / Field Visit | | 01 | Page 90 of 21 Applied Science M.S. R. Jan University of Applied Science Bangalore - 560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Department of Acciences M S Ramelant Meson - 500 664 | Total Duration in Hours | | 45 | |--|----|----| | Term Test and Written Examination, presentations | 04 | 04 | | Discussing Possible Innovations | | | | 5. Group Discussions | | | | Brainstorming Sessions | 01 | | ### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | | SEE | | | |------|-------------------------|--------------------------|--------------------------|-----------------| | | SC1
(Term Tests) 30% | SC2
(assignments) 10% | SC3
(Assignments) 20% | (40% Weightage) | | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | | CO-1 | X | Х | | Х | | CO-2 | X | X | | Х | | CO-3 | X | X | X | Х | | CO-4 | X | | X | X | | CO-5 | | | Х | Х | The Course Leader assigned to the course, in consultation with the Head of the Department, shall provide the focus of course outcomes in each component assessed in the above template at the beginning of the semester. Course reassessment policies are also presented in the Academic Regulations document. ### 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | lls How imparted during the course | | | | | | |------|------------------------------------
------------------------------------|--|--|--|--|--| | 1 | Knowledge | Classroom lectures | | | | | | | 2 | Understanding | Classroom lectures, self- study | | | | | | | 3 | Critical Skills | Assignments | | | | | | | 4 | Analytical Skills | Assignments | | | | | | | 5 | Problem Solving Skills | Assignment, examination | | | | | | M S Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 EValopplied Sciences - 560 054 M.S. Ramaign University of Applied Sciences Bangalore - 560 054 | 6 | Practical Skills | Assignments | | |----|------------------------------|--|--| | 7 | Group Work | - | | | 8 | Self-Learning | self- study | | | 9 | Written Communication Skills | Assignment, examination | | | 10 | Verbal Communication Skills | 777 | | | 11 | Presentation Skills | | | | 12 | Behavioral Skills | - | | | 13 | Information Management | Assignment | | | 14 | Personal Management | - | | | 15 | Leadership Skills | _ | | | | | At the second se | | ## 9. Course Resources ## a. Essential Reading 1.Slater, A., Scott, N.W., Fowler, M.R., 2015, Plant Biotechnology: the genetic manipulation of plant, 2nd Edition, Oxford University Press. Faculty of Life & Allied Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCEP BANGALORE-560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M Stance United for making Sciences Bangaloro - 500 054 Page 92/of 211 mics IS Remain University of Applied Sciences Bangalore - 560 054 M. S. Ramaiah University of Applied Sciences **Course Specifications** of B.Sc. (Hons) in Biotechnology Programme Code: 018 **SEMESTER 4** Department of Biotechnology Faculty of Life and Allied Health Sciences M S Ramaiah University of Applied Sciences Faculty of Life & Allied Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES Final Approval by the Academic Council in its 31st meeting held on 22st March 2024 MS Ram Grant Maturalogy Bannalo-p San Applied Sciences M.S. Ramaia Univesity of Applied Sciences Eangalore - 560 054 | Course Title | Cell Structure and Signalling | | |--------------|--|--| | Course Code | BTC204A | | | Department | Biotechnology | | | Faculty | Faculty of Life and Allied Health Sciences | | ### 1. Course Summary The aim of the course is to familiarize students with the structure and function of basic components of cells. Students will be able to understand the dynamic roles of each structure in a cell that results in coordinated function to regulate cellular life. Students will be able to carry out basic cell biology experiments. The students will be able to utilize these experiments to further their understanding of basic cell biology and familiarize themselves with experimental methods and techniques applied in research. #### 2. Course Size and Credits: | Number of Credits | 5 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of laboratory Hours | 60 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | ### Teaching, Learning and Assessment ## 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO1. Understand the structure and properties of cell - CO2. Explain the organization of eukaryotic organisms to understand the gradual evolution of complex structures - CO3. Relate the different structures that comprise cell membranes with their specific role in maintenance of cellular life - CO4. Analyse the molecular events in the cell cycle and assess the effect of its dysregulation CO5. Interpret the complex molecular events of cell signaling and its effects on gene expression CO6. Demonstrate eukaryotic cell structure and division using microscope - CO7. Analyse techniques to assess various cell functions. ## 4. Course Contents ## Theory **Unit 1 Microscopy and Cell structure:** Microscopy- Concept of Magnification and Resolution, Bright field, Dark field, Phase contrast and Fluorescence microscopy, Discovery of Cells, Cell theory, Prokaryotic and eukaryotic cells, Plant and animal cells Page 94 of 21th lics M.S. Flow 75h University of Applied Sciences Bangalore - 560 054 Unit 2 Eukaryotic cell organelles: Cell wall, Plasma membrane, Mitochondria, ER, Golgi complex, Lysosome, Peroxisome, Ribosome, Centriole, Nucleus, Vacuole and Chloroplast Unit 3 Membrane structure and Function: Models of membrane structure, Chemical composition of membranes, Membrane function, Membrane transport- Solute transport by Simple diffusion, Facilitated diffusion and Active transport, Protein trafficking Unit 4 Cytoskeleton and Cellular matrix: Microtubules, Cilia and Flagella, Intermediate Filaments, Microfilaments, ECM- Cell adhesion molecules, Cell junctions-Gap junctions and Tight junctions Unit 5 Cell cycle: Mitosis, Meiosis, Cell cycle Regulation- role of cyclins and CDKs, Cell cycle checkpoints, Overview of Autophagy, Apoptosis- Intrinsic & Extrinsic pathways of cell death, Hallmarks of Cancer, Oncogenes and tumor suppressor genes Unit 6 Cell Signaling: General Principles of cell signaling, Mechanism of molecular transduction, Overview of Major receptor classes and signaling pathways, GPCRs, Receptor tyrosine kinases, second messengers. ### **Practical** - Microscopy- Light Microscopy and Fluorescence Microscopy- principle, parts and function, Operation - Microscopic measurements, micrometer (ocular and stage). - 3. Microscopic counting of cells using a hemocytometer and cell viability assay - 4. Isolation of chloroplasts and determining the purity of chlorophyll a and b. - 5. Study of Diffusion and Osmosis across semipermeable membrane - Nuclear Staining by DAPI - 7a. Study of mitosis in onion root tip cell - 7b. To calculate mitotic index in onion root tip cell - 7c. To study inhibition of mitosis using colchicine in onion root tip cell - 8. Study of meiosis in plant cell ## 5. CO-PO PSO Mapping: M S Ramaiah University of Applied Sciences | | Ş | P02 | ğ | Ş | S. | 8 | P07 | 5 | õ | P040 | 5 | PO12 | PSO1 | PS02 | 8 | |------|---|-----|---|------|----|-----|---------|---|---|------|---|------|------|------|-----------| | CO-1 | 3 | | 1 | | | | | | - | - | | | 3 | - | | | CO-2 | 3 | - | 1 | - | 1 | - | - | - | - | - | | - | 3 | - | - | | CO-3 | 3 | - | 1 | - | 1 | | - | 1 | - | - | - | - | 3 | 1 - | - | | CO-4 | 3 | - 1 | 2 | 10 - | 1 | | | 2 | | | 1 | 1 | 3 | 1 | T | | CO-5 | 3 | | 2 | | - | - | - | 2 | | 5.00 | 1 | | 3 | 1 | | | CO-6 | 3 | - | | | 1 | - | | 2 | - | 80.0 | 1 | | 3 | 1 | \dagger | | CO-7 | 3 | - | | 1/2 | - | 1 - | <u></u> | 2 | | 12 | 1 | | 3 | 1 | \top | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Department of bolechnology # 6. Course Teaching and Learning Methods: | Teaching and Learning Methods | Duration in hours | Total Duration in
Hours | |---|-------------------|----------------------------| | Face to Face Lectures | | 36 | | Demonstrations | | | | Demonstration using Videos | 02 | | | Demonstration using Physical Models | 01 | 03 | | Demonstration on a Computer | | | | Numeracy | | | | Solving Numerical Problems | | | | Practical Work | | | | 1. Course Laboratory | 56 | | | 2. Computer Laboratory | | | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | 56 | | 5. Hospital | 22 | | | 6. Model Studio | | | | Others | | | | Case Study Presentation | | | | 2. Guest Lecture | | | | 3. Industry / Field Visit | | | | 4. Brainstorming Sessions | | 02 | | 5. Group Discussions | 01 | 02 | | Discussing Possible Innovations | 01 | 1 | | erm Test and Written Examination | | 04+04 | | otal Duration in Hours | | 105 | Faculty of Life
Allied Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 DepartmEinal Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramaiah Character 560 054 Page 96 of 211 ademics 14.5. Ramaiah University of Applied Sciences Bangalore - 560 054 ### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | | SEE
(40% Weightage) | | | | | |------|------------------|-----------------------------------|-----------------------------------|-----------------|-----------|--| | | SC1 | SC1 SC2 SC3 | | | SEE | | | | (Term Tests) 30% | (Innovative + Lab assignment) 10% | (Written + Lab
Assignment) 20% | (Theory)
25% | (Lab) 15% | | | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | 30 Marks | | | CO-1 | X | Х | | Х | | | | CO-2 | Х | Х | | Х | | | | CO-3 | X | | Х | Х | | | | CO-4 | | | Х | Х | | | | CO-5 | | X | | | Х | | | ÇO-6 | | Х | Х | | Х | | | CO-7 | | | Х | | Х | | ## 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | .No | Curriculum and Capabilities Skills | How imparted during the course | | |-----|------------------------------------|--------------------------------|--| | 1 | Knowledge | Classroom lectures | | | 2 | Understanding | Classroom lectures, self-study | | | 3 | Critical Skills | Assignment | | | 4 | Analytical Skills | Assignment | | | 5 | Problem Solving Skills | Assignment, Examination | | | 6 | Practical Skills | Assignment, Examination | | | 7 | Group Work | esc 4 | | | 8 | Self-Learning | Self-study | | | 9 | Written Communication Skills | Assignment, examination | | | 10 | Verbal Communication Skills | | | | 11 | Presentation Skills | - | | | 12 | Behavioral Skills | - | | | 13 | Information Management | Assignment | | | 14 | Personal Management | - | | | 15 | Leadership Skills | | | Bangalore - 560 054 Dean - Academics M.S. Ramaiah University of Applied Sciences ### 9. Course Resources ### a. Essential Reading - Karp, G., 2010, Cell and Molecular Biology: Concepts and Experiments, 6th Edition, John Wiley & Sons. Inc. - 2. De Robertis, E.D.P., and De Robertis, E.M.F., 2006, Cell and Molecular Biology, 8th Edition, Lippincott Williams and Wilkins, Philadelphia. - 3. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D., 1994, Molecular Biology of the Cell, 3rd Edition, Garland Publishing. - 4. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., Walter, P., 2014, Molecular Biology of the Cell, 6th Edition, W. W. Norton & Company. - 5. Cooper, G.M. and Hausman, R.E. 2009, The Cell: A Molecular Approach, 5th Edition, ASM Press & Sunderland, Washington, D.C.; Sinauer Associates, MA. - 6. Lab manual ## b. Recommended Reading - 1. Becker, W.M., Kleinsmith, L.J., Hardin. J. and Bertoni, G. P., 2009, The World of the Cell, 7th Edition. Pearson Benjamin Cummings Publishing, San Francisco. - 2. Lodish, H., Baltimore, D., Berk, A., Zipursky, B.L., Mastsydaira, P., Darnell, J., 2004, Molecular Cell Biology, Scientific American Books Inc. NY. - 3. Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Bretscher, A., 2016, Molecular Cell Biology, 8th Edition, W.H. Freeman & Co. - 4. Tobin, A.J. and Morel, R.E., 1997, Asking about cells, Saunders College Publisher. - 5. Wolfe, S.L., 1991, Molecular and Cellular Biology, Wordsworth Pub. Co. - **6.** Hunt, T., Wilson, J., 2014, The Problems Book for Molecular Biology of the Cell, 6th Edition, W. W. Norton & Company. ## c. Magazines and Journals - https://www.nature.com/ncb/ - http://mcb.asm.org/ #### d. Websites - 1. https://www.cellsalive.com/ - 2. http://www.biology.arizona.edu/cell_bio/cell_bio.html Page 98 of 214 emics M.S. Lamajah Univ. My of Applied Sciences Bangalore - 560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Department of Forest Missing Council in its 31st meeting held on 22nd March 2024 Miss Ramaian University Council in its 31st meeting held on 22nd March 2024 Bangalore - 560 054 | Course Title | Molecular Biology | |--------------|--| | Course Code | BTC205A | | Department | Biotechnology | | Faculty | Faculty of Life and Allied Health Sciences | ## 1. Course Summary The course aims to familiarize students with the concepts of Molecular Biology and its applications. Students will be acquainted with the central principles and fundamental mechanisms for the organization, replication, expression, variation, and evolution of the genetic material, as well on methods for molecular biology analyses and gene technology. Students will be trained on the principles of recent methods and tools so that they can relate those in areas like recombinant DNA technology, medical genetics, cancer biology and molecular taxonomy. #### 2. Course Size and Credits: | Number of Credits | 5 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of laboratory Hours | 60 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | ### Teaching, Learning and Assessment ## 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO1. Describe the structure and properties of DNA with reference to its structure and replication. - CO2. Illustrate the processes of DNA repair and recombination to maintain the integrity of DNA and chromosomes. - CO3. Explain the comprehensive mechanism involved in transcription and RNA processing. - CO4. Distinguish between the molecular mechanisms involved in prokaryotic and eukaryotic protein synthesis. - CO5. Compare and contrast the process of prokaryotic and eukaryotic gene regulation - CO6. Apply the tools and techniques to isolate DNA from various sources. - CO7. Analyze DNA and protein isolated using modern technologies. #### 4. Course Contents Bangalore - 580 054 Theory Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 ment of Biotechnology M S Ramatah University A Applied Sciences Dean - Academics M.S. Rainaiah Univesity of Applied Sciences Bangalore - 560 054 **Unit 1 DNA structure and replication**: DNA as genetic material, Structure of DNA, Types of DNA, Replication of DNA in prokaryotes and eukaryotes: Semiconservative nature of DNA replication, Bi- directional replication, DNA polymerases, the replication complex: Pre-priming proteins, primosome, replisome, Rolling circle replication, Unique aspects of eukaryotic chromosome replication, Fidelity of replication. **Unit 2 DNA damage, repair and homologous recombination:** DNA damage and repair: causes and types of DNA damage, mechanism of DNA repair. Photoreactivation, base excision repair, nucleotide excision repair, mismatch repair, recombinational repair, nonhomologous end joining. Homologous recombination: models and mechanism. **Unit 3 Transcription in prokaryotes and eukaryotes:** RNA structure and types of RNA, Transcription in prokaryotes: Prokaryotic RNA polymerase, role of sigma factor, promoter, Initiation, elongation, and termination of RNA chains. Transcription in eukaryotes: Eukaryotic RNA polymerases, transcription factors, promoters, enhancers, mechanism of transcription initiation, promoter clearance and elongation. RNA splicing and processing: processing of pre-mRNA: 5' cap formation, polyadenylation, splicing, rRNA and tRNA splicing. **Unit 4 Translation:** Structure and role of t-RNA in protein synthesis, ribosome structure and assembly, basic features of genetic code, Charging of tRNA, aminoacyl tRNA synthetases, Mechanism of initiation, elongation, and termination of polypeptides in prokaryotes and eukaryotes. Fidelity of translation, Inhibitors of translation. **Unit 5 Post Translational modification and Protein Targeting**: Glycosylation, Disulphide bond formation, protein folding and proteolytic cleavage. Export of secretory proteins- signal hypothesis, Transport, and localization of proteins to mitochondria and chloroplast. Unit 6 Regulation of gene expression- Regulation of gene expression in prokaryotes: Operon concept (inducible and repressible system) Regulatory strategies in Eukaryotes: transcriptional activation, galactose metabolism in yeast. ## **Practical** - 1. Genomic DNA isolation from Plant tissue - 2. Genomic DNA isolation from animal tissue - 3. Genomic DNA isolation from bacteria - 4. Isolation of plasmid DNA from bacteria - 5. Separation of DNA by Agarose Gel electrophoresis - Estimation of DNA by colorimetric method - 7. Quantification of DNA by spectroscopic analysis - 8. Separation of Protein by SDS-PAGE - Determination of Molecular weight of DNA and Protein. Dean - Academics Page 100 of 211 Applied Sciences M.S. Ranalah University Bangalore - 550 654 Hoad # 5. CO-PO PSO Mapping: | | PQ. | P02 | ន្ទ | 퉣 | Sõ | 8 | P07 | 8 | 8 | P040 | 5 | P012 | PSOT | PS02 | | |------|-----|-----|-----|---|----|------|-----|---|---|------|----|------|------|------|---| | CO-1 | 3 | 2 | - | | · | • | - | | 8 | | | 1 | 3 | 2 | t | | CO-2 | 3 | 3 | - | - | | | - | | * | - | - | 3 | 3 | 2 | T | | CO-3 | 3 | 3 | - | - | - | | - | | | - | - | 3 | 3 | 2 | T | | CO-4 | 3 | 2 | - | - | 1 | | - | | | - | - | 3 | 3 | 2 | T | | CO-5 | 3 | 3 | | - | 1 | - | 1 | | * | - | 2. | 3 | 3 | 2 | T | | CO-6 | 2 | 3 | 3 | - | - | 0.35 | 1 | | | - | - | 3 | 3 | 2 | T | | CO-7 | 2.
 3 | 3 | - | | | 1 | | | 1 | - | 3 | 3 | 2 | T | # 6. Course Teaching and Learning Methods: | Feaching and Learning Method's | Duration in hours | Total Duration in
Hours | |---|-------------------|----------------------------| | Face to Face Lectures | | 33 | | Demonstrations | | | | Demonstration using Videos | 05 | 1 | | Demonstration using Physical Models | 01 | 06 | | 3. Demonstration on a Computer | | 1 | | Numeracy | | | | Solving Numerical Problems | | 1 | | Practical Work | | | | 1. Course Laboratory | 56 | 1 | | 2. Computer Laboratory | | | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | 56 | | 5. Hospital | | | | 6. Model Studio | | | | Others | | | | Case Study Presentation | | 1 | | 2. Guest Lecture | | 1 | | 3. Industry / Field Visit | | 1 | | 4. Brainstorming Sessions | | 02 | | 5. Group Discussions | 01 |] " | | Discussing Possible Innovations | 01 | | | erm Test and Written Examination | | 04+04 | | Total Duration in Hours | 105 | | Page 101 of 217 mics M.S. Ramaiah University & Applied Sciences Bangalore - 560 054 ### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | | CE (60% Weightage) | | | | | | | |------|------------------|-----------------------------------|-----------------------------------|-----------------|-----------|--|--|--| | | SC1 | SC1 SC2 SC3 | | | | | | | | | (Term Tests) 30% | (Innovative + Lab assignment) 10% | (Written + Lab
Assignment) 20% | (Theory)
25% | (Lab) 15% | | | | | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | 30 Marks | | | | | CO-1 | X | Х | | Х | | | | | | CO-2 | X | Х | | Х | | | | | | CO-3 | X | | Х | Х | | | | | | CO-4 | | | Х | Х | | | | | | CO-5 | | | | Х | | | | | | CO-6 | | Х | Х | | Х | | | | | CO-7 | | Х | Х | | X | | | | ## 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | How imparted during the course | | |------|------------------------------------|--------------------------------|--| | 1 | Knowledge | Classroom lectures | | | 2 | Understanding | Classroom lectures, self-study | | | 3 | Critical Skills | Assignment | | | 4 | Analytical Skills | Assignment | | | 5 | Problem Salving Skills | Assignment, Examination | | | 6 | Practical Skills | Assignment | | | 7 | Group Work | | | | 8 | Self-Learning | Self-study | | | 9 | Written Communication Skills | Assignment, examination | | | 10 | Verbal Communication Skills | | | | 11 | Presentation Skills | - | | | 12 | Behavioral Skills | - | | | 13 | Information Management | Assignment | | | 14 | Personal Management | - | | | 15 | Leadership Skills | - | | Final Approval by the Academic Council in its 31st meeting held on 22™ March 2024 Page 102 of 211 ademics M.S. Ramaiah University of Applied Sciencer Bangalore - 560 054 ### 9. Course Resources ### a. Essential Reading - Lodish, H., Baltimore, D., Berk, A., Zipursky, B.L., Mastsydaira, P., Darnell, J., 2004. Molecular Cell Biology, Scientific American Books Inc. NY. - 2. Karp, G., 2010, Cell and Molecular Biology: Concepts and Experiments, 6th Edition, John Wiley & Sons. Inc. - 3. Watson, J. D., Baker T.A., Bell, S. P., Gann, A., Levine, M., Losick, R., 2008, Molecular Biology of the Gene, 10th Edition, Cold Spring Harbour Lab., Press, Pearson Pub. - 4. De Robertis, E.D.P., De Robertis, E.M.F., 2006, Cell and Molecular Biology, 8th Edition, Lippincott Williams and Wilkins, Philadelphia. - 5. Becker, W.M., Kleinsmith, L.J., Hardin. J. and Bertoni, G. P., 2009, The World of the Cell, 7 Edition, Pearson Benjamin Cummings Publishing, San Francisco. - 6. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., Walter, P., 2014, Molecular Biology of the Cell, 6th Edition, W. W. Norton & Company. - 7. Sambrook, J., Fritsch, E.F., Maniatis, T., 2001, Molecular Cloning-A Laboratory Manual, 3rd Edition, Cold Spring Harbor Laboratory Press. ### b. Recommended Reading - Russell, P. J., 2009, Genetics- A Molecular Approach, 3rd Edition, Benjamin Cummings. - 2. Griffiths, A.J.F., Wessler, S.R., Lewontin, R.C., Carroll, S.B., 2007, 9th Edition, Introduction to Genetic Analysis, W. H. Freeman & Co. - 3. Clark, D.P., Pazdernik, N.J., 2009, Biotechnology-Applying the Genetic Revolution, Elsevier Academic Press, USA... ## c. Magazines and Journals https://www.nature.com/ncb/ ### d. Websites - https://cmbl.biomedcentral.com/ - http://mcb.asm.org/ ### e. Other Electronic Resources http://www.web-books.com/MoBio/ Bangalore - 560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ran Sklesske M & Applied Sciences Bangalore - 560 054 | Course Title | Molecular Genetics | | |--------------|--|--| | Course Code | BTC206A | | | Department | Biotechnology | | | Faculty | Faculty of Life and Allied Health Sciences | | ## 1. Course Summary The course aims to acquaint students in concepts and theories, leading to an understanding of genetics at the molecular level. Students will be familiarized with the structural complexities involved in packaging of DNA into chromosomes and the nucleus. They will be taught the different mechanisms involved in genetic recombination in bacteria. They will also be familiarized with the mechanism of sex determination and dosage compensation. The students will be taught about various types and mechanisms involved in mutations. They will be familiarized with the role of transposable elements. ### 2. Course Size and Credits: | Number of Credits | 3 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of laboratory Hours | 0 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | ### Teaching, Learning and Assessment ### 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO1. List and describe the structural, functional, and topological features of DNA within the genome - CO2. Compare and contrast the mechanisms of genetic recombination in bacteria and bacteriophages - CO3. Discuss molecular basis of mutation and its role in human genetic disorders - CO4. Illustrate and describe molecular basis of DNA repair and recombination - CO5. Distinguish the molecular nature of sex determination and dosage compensation mechanisms in model organisms - CO6. Describe mechanisms of epigenetic regulation of gene expression ### 4. Course Contents #### Theory Unit 1 DNA Structure and Organization in Chromosomes: Discovery of and evidence for DNA as genetic material, Analytical techniques used in investigation of DNA, Structure of viral, bacterial and eukaryotic chromosomes, DNA topology, DNA organization in Page 104 of 24 demies gnalah Univesity of Applied Sciences Bangalore - 560 054 nucleosomes, Mitotic and unusual interphase chromosomes and their significance, Sequence organization in eukaryotic chromosomes, Chromosomal territories in eukaryotes and their significance. **Unit 2 Genetic Analysis and Gene Mapping in Bacteria and Bacteriophages:** Genetic recombination in bacteria and its evolutionary significance, Transformation, Conjugation and Transduction, Methods to study recombination in bacteria, Genetics of bacteriophages, Mapping genes in bacteria using genetic data, Antibiotic resistance in bacteria **Unit 3 Molecular Basis of Mutation:** Types of mutations and their effect on gene expression and phenotype, Spontaneous mutations, Induced mutations (chemical and radiation), Ames Test to assess mutagenicity, Single- gene mutations in human diseases, Transposable elements as agents of mutation, Somatic vs Germline mutations. Mutation as a random and non-adaptive process **Unit 4 Molecular Basis of DNA Repair and Recombination**: DNA repair mechanisms to counteract mutations, inherited human diseases with defects in DNA repair, DNA recombination mechanisms (Holliday and Whitehouse model), Significance of recombination events, DNA recombination in meiosis and in repair of DNA damage, Gene conversion **Unit 5 Molecular Basis of Sex Determination**: Sex determination mechanisms in invertebrates and vertebrates; Dosage compensation mechanisms in invertebrates and vertebrates; Effect of environment on sex-determination mechanisms **Unit 6 Epigenetics:** Epigenetics mechanisms involved in gene regulation; DNA methylation; Histone modifications and their role in epigenetic gene regulation; RNA interference; Epigenetics and imprinting; Role of epigenetics in cancer; Projects underway to map the human epigenome. ### 5. CO-PO PSO Mapping: | | 7 0 | P02 | PO3 | P04 | PO5 | POS | P07 | PO8 | Pog | PO10 | PO41 | P012 | PS01 | PS02 | BS03 | |------|------------|-----|---------|---------|---------|--------|---------|----------|---------|--------|------|------|------|------|------| | CO-1 | 3 | • | • | | 1 | - | 1 | - | 1 | 1 | - | 1 | - | - | | | CO-2 | 3 | 2 | - | - | 1 | - | 1 | - | -1 | 1 | - | 1 | 3 | 2 | , | | CO-3 | 3 | 2 | - | | 1 | - | 1 | - | 1 | 1 | - | 1 | 3 | 2 | 1 | | CO-4 | 3 | 2 | - | | 1 | - | 1 | - | 1 | 1 | - | 1 | 3 | | 1 | | CO-5 | 3 | - | - | | 1 | - | 1 | - | 1 | 1 | - | 1 | - | - | | | CO-6 | 3 | - | - | - | 1 | - | 1 | - | 1 | 1 | - | 1 | 3 | 2 | | | | | 3:1 | High In | fluence | , 2: Mo |
derate | Influer | ce, 1: l | Low Inf | luence | | | | | | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Conversity of Applied Sciences Pangalore - 560 054 M.S. Rame of University of Applied Science Bangalors - 560 054 ## 6. Course Teaching and Learning Methods: | eaching and Learning Methods | Duration in hours | Total Duration in
Hours | |---|-------------------|----------------------------| | Face to Face Lectures | h- | 36 | | Demonstrations | | | | Demonstration using Videos | 02 | 1 | | Demonstration using Physical Models | 01 | 03 | | Demonstration on a Computer | | 1 | | Numeracy | | | | Solving Numerical Problems | | 1 | | Practical Work | | | | 1. Course Laboratory | | Ī | | 2. Computer Laboratory | | | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | | | 5. Hospital | |] | | 6. Model Studio | | 1 | | Others | | | | Case Study Presentation | | 1 | | 2. Guest Lecture | Α | 1 | | 3. Industry / Field Visit | | 1 | | Brainstorming Sessions | | 02 | | 5. Group Discussions | 01 | 72 | | Discussing Possible Innovations | 01 | | | erm Test and Written Examination | | 04 | | otal Duration in Hours | | 45 | Faculty of Life & Filled Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 Head DeparFinal Approval by the Academic Council in its 31st meeting held on 22rd March 2024 M S Ramalague 1550 054 Page 106 of 211 Dean - Academics M.S. Paralliah University of Applied Sciences Bangalore - 560 054 ### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | | CE (60% Weightage | | SEE | |------|-------------------------|---|--|-------------------------------------| | | SC1
(Term Tests) 30% | SC2
(Innovative + Lab
assignment) 10% | SC3
(Written + Lab
Assignment) 20% | (40% Weightage)
50 Marks | | | (25 + 25 Marks) | 10 Marks | 40 Marks | | | CO-1 | Х | Х | | Х | | CO-2 | Х | Х | | Х | | CO-3 | X | Х | Х | Х | | CO-4 | X | | Х | Х | | CO-5 | | | | Х | | CO-6 | | Х | Х | Х | ## 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | How imparted during the course | | |------|------------------------------------|--------------------------------|--| | 1 | Knowledge | Classroom lectures | | | 2 | Understanding | Classroom lectures, self-study | | | 3 | Critical Skills | Assignment | | | 4 | Analytical Skills | Assignment | | | 5 | Problem Solving Skills | Assignment, Examination | | | 6 | Practical Skills | Assignment, Examination | | | 7 | Group Work | - | | | 8 | Self-Learning | Self-study | | | 9 | Written Communication Skills | Assignment, examination | | | 10 | Verbal Communication Skills | | | | 11 | Presentation Skills | | | | 12 | Behavioral Skills | - | | | 13 | Information Management | Assignment | | | 14 | Personal Management | == | | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramaiah University of Applied Sciences Bangalore - 560 054 Page 107 of 211 /Dean - Academics M.S. Ramaian University of Applied Sciences Bangalore - 560 054 | 15 | Leadership Skills | | |----|-------------------|--| | | | | #### 9. Course Resources ### a. Essential Reading - Snustad, D.P., Simmons, M.J., 2012, Principles of Genetics, 6th Edition, John Wiley & Sons Inc. - 2. Klug, W.S., Cummings, M.R., Spencer, C.A., Palladino, M.A., 2012, Concepts of Genetics, 10th Edition, Pearson Education Inc. - Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M., Roberts, K., Walter, P., 2015, Molecular Biology of the Cell, 6th Edition, Garland Science - 4. Griffiths, A.J.F., Wessler, S.R., Lewontin, R.C., Carroll, S.B., 2007, 9th Edition, Introduction to Genetic Analysis, W. H. Freeman & Co. - 5. Watson, J. D., Baker T.A., Bell, S. P., Gann, A., Levine, M., Losick, R., 2008, Molecular Biology of the Gene, 10th Edition, Cold Spring Harbour Lab., Press, Pearson Pub. ## b. Recommended Reading - Watson J.D., Hopkins, N.H., Roberts, J.W., Steitz, J.A., Weiner, A.M., 1987, Molecular Biology of the Gene, 4th Edition, Benjamin/Cummings. - Darnell, J., Lodish, H., Baltimore, D., 1990, Molecular cell Biology, 2nd edition, Scientific American Books, New York. ## c. Magazines and Journals https://academic.oup.com/hmg ### d.Websites https://www.nature.com/scitable/ ### e. Other Electronic Resources https://www.britannica.com/science/molecular-genetics Faculty of Life Wind Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 of Medied Sciences Page 108 of 211 of Applied Sciences A.S. Remaiah University of Applied Sciences | Course Title | Applications of Biotechnology in Medicine | | |--------------|--|--| | Course Code | BTO202A | | | Department | Biotechnology | | | Faculty | Faculty of Life and Allied Health Sciences | | This course aims to familiarize students with the biotechnological advancements in medicine, including diagnostics, therapeutics and health care strategies. The students will get acquainted with the emerging trends in the field of medical biotechnology. They will also gain insight on the future trends and prospects in biotechnological research pertaining to the field of medicine. ### 2. Course Size and Credits: | Number of Credits | 3 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of laboratory Hours | 0 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | ### Teaching, Learning and Assessment # 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO1. Discuss the importance of clinical research in medicine - CO 2. Distinguish various molecular therapeutic approaches to diseases - CO 3. Explain the role of microbes in therapeutic applications - CO 4. Summarize the recent trends in medical biotechnology - CO 5. Illustrate strategies and techniques used in drug development - CO 6. Outline the biotechnological tools in disease diagnosis #### 4. Course Contents ### Theory **Unit 1 Disease diagnosis-probe:** PCR, LCR immunological assay. Detection of genetic, Neurogenetic disorders involving Metabolic and Movement disorders. Detection of mutations in neoplastic diseases PCR, SSCP, DGGE, etc. Unit 2 Molecular therapeutics: Gene therapy, overview of inherited and acquired diseases for gene therapy. Cellular therapy; use of stem cells. Medical products developed by using Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Dean - Academics MS 5 Shouter by Middled Sciences biotechnology tools -Antibiotics, Recombinant Insulin, Erythropoietin, Vaccines, Monoclonal antibodies **Unit 3 Application of microbes in Medical biotechnology:** Antimicrobial drugs, Antibiotic production, Penicillin production, Streptomycin production, Synthesis of vitamin B12 using microbes, Production of enzymes by using microbes **Unit 4 Trends in Medical biotechnology:** Embryonic stem cells, Human genome project and its significance, RNA interference technology, Phage therapy, Recombinant DNA technology, Biochips, Liposome-based drug delivery, Nanobiotechnology **Unit 5 Drug development:** Drugs, drug receptors, Conventional drug design approaches, irrational vs rational, Lipinski's rule of five, ADME, Calculation of LD 50 and ED 50. Drug development process (Preclinical, clinical and toxicological studies). # 5. CO-PO PSO Mapping: | | PQ | P02 | នួ | 90
4 | POS | P.06 | PO7 | PO8 | P 09 | PO10 | P04 | P012 | P\$01 | PS02 | 1 | |------|----|-----|------------------------|--------------|-----------------|--------|---------|----------|-------------|--------|-----|------|-------|------|----| | CO-1 | 3 | | | 1 | 1 | - | - | | - | - | | 1 | 2 | 1 | | | CO-2 | 3 | 1 | 1 | - | 1 | | • | • | - | - | | 1 | 1 | 1 | | | CO-3 | 3 | - | | | 1 | - | • | | - | - | | 1 | 2 | 1 | | | CO-4 | 3 | 1 | 1 | - | 1 | - | • | • | - | - | | 1 | 2 | 1 | | | CO-5 | 3 | | - | 2 | 1 | | | | - | - | : | 1 | 3 | 1 | | | | | 3:1 | l
High I n i | i
fluence | , 2: M o | derate | Influer | ce, 1: l | ow Inf | luence | _ | | | - | I. | # 6. Course Teaching and Learning Methods: | aching and Learning Methods | Duration in hours | Total Duration in
Hours | |--|-------------------|----------------------------| | Face to Face Lectures | 34 | | | Demonstrations | | | | Demonstration using Videos | 02 | 1 | | 2. Demonstration using Physical Models | 01 | 03 | | 3. Demonstration on a Computer | | 1 | | Numeracy | | | | Solving Numerical Problems | | | | Practical Work | | | | 1. Course Laboratory | | 1 | | 2. Computer Laboratory | | | | Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | † | | 5. Hospital | | 1 | Head M.S. Ramilah Univesity of Applied Sciences Final Approval by the Academic Council in its 31st meeting held on 22™ March 2024 | otal Duration in Hours | 45 | |----------------------------------|-------| | erm Test and Written Examination | 04+04 | | Discussing
Possible Innovations | | | 5. Group Discussions | | | Brainstorming Sessions | | | 3. Industry / Field Visit | | | 2. Guest Lecture | | | Case Study Presentation | | | Others | | | 6. Model Studio | | ### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | | SEE
{40% Weightage} | | | | | |------|-------------------------|------------------------|----------|------------------------|------------------|--| | | SC1
(Term Tests) 30% | | | SEE
(Theory)
25% | SEE
(Lab) 15% | | | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | 30 Marks | | | CO-1 | X | X | | Х | | | | CO-2 | X | Х | | Х | | | | CO-3 | X | | Х | Х | | | | CO-4 | X | | Х | Х | | | | CO-5 | | | Х | Х | | | | CO-6 | | Х | Х | | Х | | | CO-7 | | | Х | | Х | | # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | How imparted during the course | |------|------------------------------------|--------------------------------| | 1 | Knowledge | Classroom lectures | | 2 | Understanding | Classroom lectures, self-study | | 3 | Critical Skills | Assignment | | 4 | Analytical Skills | Assignment | | 5 | Problem Solving Skills | Assignment, Examination | | 6 | Practical Skills | Assignment | | 7 | Group Work | | | 8 | Self-Learning | Self-study | | 9 | Written Communication Skills | Assignment, examination | | 10 | Verbal Communication Skills | | | 11 | Presentation Skills | | | 12 | Behavioral Skills | | | 13 | Information Management | Assignment | | 14 | Personal Management | - | | 15 | Leadership Skills | - | ### 9. Course Resources ### a. Essential Reading - 1. Pongracz, J., Keen, M., 2008, Medical Biotechnology, 1stEdition, Elsevier publications. - 2. Jogdand, S.N., 2008, Medical Biotechnology, 2ndEdition, Himalaya publishers. - 3. Katzung, B.G., 2004, Basic and Clinical Pharmacology, 9thEdition, Mc Graw Hill Publications. ## b. Recommended Reading - Medical Biotechnology by Bernard R. Glick, Cheryl L. Patten, Terry L. Delovitch, ASM Press - Fundamentals and Advances in Medical Biotechnology by Mumtaz Anwar, Riyaz AhmadRather, Zeenat Farooq, Springer # c. Magazines and Journals 1. https://www.pulsus.com/medical-biotechnology.html # d. Websites https://catalog.uic.edu/gcat/colleges-schools/medicine/mbt/ Page 112 of 211 Dean - Academics M.S. Ramaiah University of Applied Sciences De Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Bangalore - 560 054 M. S. Ramaiah University of Applied Sciences **Course Specifications** of B.Sc. (Hons) in Biotechnology Programme Code: 018 SEMESTER 5 Department of Biotechnology Faculty of Life and Allied Health Sciences M S Ramaiah University of Applied Sciences Faculty of Life & Allied Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCE BANGALORE-560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Should It adhology Liniversity of Applied Sciences Bangalore - 560 054 MS Ran CRage 143 of 21 PS M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 | Course Title | Recombinant DNA Technology | | |--------------|--|--| | Course Code | BTC301A | | | Department | Biotechnology | | | Faculty | Faculty of Life and Allied Health Sciences | | The course aims to acquaint the students to the principles and methodologies of the versatile techniques employed in genetic engineering and recombinant DNA technology. Students will be familiarized with the methodological repertoire of the basic and applied fields of recombinant DNA technology. This course will provide theoretical and practical concepts on the properties and applications of versatile DNA modifying enzymes, cloning strategies, vector types, host genotype specificities for selection and screening of recombinants. The students will be facilitated with a strong foundation for more advanced cutting-edge technologies. #### 2. Course Size and Credits: | Number of Credits | 5 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of laboratory Hours | 60° | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | # Teaching, Learning and Assessment # 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Explain creative use of modern tools and technologies for manipulation of genomic sequences. - CO 2. Describe methodologies involved in in vitro construction of recombinant DNA molecules. - CO 3. Illustrate the methodologies involved in in-vitro construction of gene libraries. - CO 4. Elaborate on the techniques used in gene transfer and selection of recombinants. - CO 5. Elucidate the application of RDT in Biotechnology, medicine and research. - CO 6. Demonstrate the qualitative and quantitative analysis of DNA using modern technologies. - CO 7. Acquire hands-on experience on gene cloning, protein expression and detection. Page 114 of 219 ademics Ramaian University of Applied Sciences Bangalore - 560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 #### 4. Course Contents Theory **Unit 1 Tools for RDT I-Enzymes:** Restriction endonucleases, DNA ligases, Alkaline phosphatase, Polynucleotide kinase, Exonuclease III, DNase I, DNA polymerase and Klenow fragment, Terminal nucleotidyl transferase, RNA polymerase. **Unit 2 Tools for RDT II-Vectors:** Properties of an ideal vector, Cloning and expression vectors. Prokaryotic vectors: Plasmids- pBR 322, pUC 18, Bacteriophages- Lambda phage, M13 and Cosmids. Eukaryotic vectors: Yeast expression vectors and YAC vector; Shuttle vectors- Yeast and E. coli. Plants: Agrobacterium vectors- Ti plasmid-Binary and Co integrated vectors, Plant viral vectors (CaMV). Animal viral vectors- SV 40 and retroviral vectors. Expression vectors in Prokaryotes and Eukaryotes. **Unit 3 In vitro construction of recombinant DNA molecules:** Isolation of gene of interest, generating DNA fragments. Terminal modification of DNA – linkers, Adaptors, Homopolymer tailing. Construction and Applications of Genomic and c DNA libraries. **Unit 4 Transformation and Selection of recombinants:** Direct gene transfer methods: Chemical methods, Lipofection, Electroporation, Microinjection, Bailistic method (Particle shot gun method). Direct methods of Selection-Insertion inactivation, Visual screening method, Plaque detection, Complementation of mutation /nutrition. Indirect methods- Colony hybridization, Immunochemical detection. Selectable genes: Plants- npt; Animals-TK. Scorable genes Plants-Gus; Animals-Iux. **Unit 5 Techniques and Applications of RDT:** Gel electrophoresis: AGE and SDS-PAGE. Blotting: Southern; Northern; Western. Autoradiography, DNA sequencing: Sanger's Dideoxy method, Maxam Gilbert and Pyrosequencing. Labeling probes (radioactive & non-radioactive), Site directed mutagenesis, Polymerase Chain Reaction, Purification of His tag proteins. Applications: Transgenic microbes, Plants and Animals: - Production of recombinant insulin, human growth hormone and vaccine. # **Practical** - 1. Isolation of chromosomal DNA from plant cells and AGE - 2. Isolation of chromosomal DNA from E.coli and AGE - 3. Qualitative and quantitative analysis of DNA using spectrophotometer - 4. Restriction digestion/restriction mapping of DNA - 5. Ligation of DNA to construct recombinant DNA - 6. Preparation of competent cells using E.coli - 7. Transformation of competent cells using PUC vector - 8. Amplification of DNA using PCR - Random amplification of polymorphic DNA - 10. SDS PAGE and Western blotting. Bangalora - 560 054 Page 115 of 211 Dean - Academics M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 Applied Sciences # 5. CO-PO PSO Mapping: | | 퉏 | P02 | Pos | 5 | PO5 | P.06 | P07 | 5 | 5 | P010 | 5 | P012 | PSO1 | P\$02 | | |------|---|-----|-----|---|-----|------|-----|-----|---|------|---|------|------|-------|---| | CO-1 | 3 | 2 | 3 | - | - | | - | :3 | | | • | 3 | 3 | 2 | t | | CO-2 | 3 | 2 | 2 | | - | | | 298 | - | - | | 3 | 3 | 2 | t | | CO-3 | 3 | 2 | 1 | - | 3 | - | - 1 | 190 | - | - | * | 3 | 3 | 2 | t | | CO-4 | 3 | 2 | 1 | - | 3 | - | - | ** | - | - | - | 3 | 3 | 2 | t | | CO-5 | 3 | 3 | 3 | - | 3 | - | - | | 1 | 1 | - | 3 | 3 | 2 | t | | CO-6 | 3 | 3 | 3 | - | 3 | - | | - | | 1 | - | 3 | 3 | 2 | t | | CO-7 | 3 | 3 | 3 | | 2 | | - | | - | 1 | 1 | 3 | 3 | 2 | t | # 6. Course Teaching and Learning Methods: | Teaching and Learning Methods | Duration in hours | Total Duration in
Hours | | | | | |---|-------------------|----------------------------|--|--|--|--| | Face to Face Lectures | | | | | | | | Demonstrations | | | | | | | | Demonstration using Videos | 05 | | | | | | | Demonstration using Physical Models | 01 | 06 | | | | | | Demonstration on a Computer | | | | | | | | Numeracy | | | | | | | | 1. Solving Numerical Problems | | | | | | | | Practical Work | | | | | | | | 1. Course Laboratory | 56 | | | | | | | 2. Computer Laboratory | | | | | | | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | | | | | 4. Clinical Laboratory | | 56 | | | | | | 5. Hospital | | | | | | | | 6. Model Studio | | | | | | | |
Others | | | | | | | | Case Study Presentation | | • | | | | | | 2. Guest Lecture | | İ | | | | | | 3. Industry / Field Visit | | | | | | | | 4. Brainstorming Sessions | | 02 | | | | | | 5. Group Discussions | 01 | V2 | | | | | | Discussing Possible Innovations | 01 | | | | | | | erm Test and Written Examination | hi . | 04+04 | | | | | | otal Duration in Hours | | 105 | | | | | Department of Dictachnology Department of Dictachnology M S Ramale Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Page 1,6 of 211 demics M.S. Ramaial University of Applied Sciences Bangalore - 560 054 ### 7, Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | | SEE
(40% Weightage) | | | | | |------|------------------|-----------------------------------|-----------------------------------|-----------------|-----------|--| | | SC1 | SC2 | SC3 | SEE | SEE | | | | (Term Tests) 30% | (Innovative + Lab assignment) 10% | (Written + Lab
Assignment) 20% | (Theory)
25% | (Lab) 15% | | | | (25 + 25 Marks) | 20 Marks | 40 Marks | 50 Marks | 30 Marks | | | CO-1 | X | Х | - | Х | | | | CO-2 | X | X | | Х | | | | CO-3 | Х | | Х | Х | | | | CO-4 | | | X | Х | | | | CO-5 | | | | Х | | | | CO-6 | | Х | Х | | Х | | | CO-7 | | X | Х | | Х | | # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | .No | Curriculum and Capabilities Skills | How imparted during the course | | | | | | |-----|------------------------------------|--------------------------------|--|--|--|--|--| | 1 | Knowledge | Classroom lectures | | | | | | | 2 | Understanding | Classroom lectures, self-study | | | | | | | 3 | Critical Skills | Assignment | | | | | | | 4 | Analytical Skills | Assignment | | | | | | | 5 | Problem Solving Skills | Assignment, Examination | | | | | | | 6 | Practical Skills | Assignment, Examination | | | | | | | 7 | Group Work | | | | | | | | 8 | Setf-Leaming | Self-study | | | | | | | 9 | Written Communication Skills | Assignment, examination | | | | | | | 10 | Verbal Communication Skills | - | | | | | | | 11 | Presentation Skills | - | | | | | | | 12 | Behavioral Skills | _ | | | | | | | 13 | Information Management | Assignment | | | | | | | 14 | Personal Management | •• | | | | | | | 15 | Leadership Skills | - | | | | | | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Seatmon (Liphent nology Charles by of Applied Sciences (Applied Sciences) Dean - Academics M.S. Ramaiah University of Applied Science Bangalore - 560 054 # 9. Course Resources # a. Essential Reading - 1. Lecture Handouts. - 2. Brown, T.A., 2006, Gene Cloning and DNA Analysis, 5th Edition, Blackwell Publishing, Oxford, U.K. - Glick, B.R., Pasternak, J.J., 2003, Molecular Biotechnology Principles and Applications of Recombinant DNA, ASM Press, Washington. - 4. Primrose, S.B., Twyman, R.M., 2006, Principles of Gene Manipulation and Genomics, 7th edition, Blackwell Publishing, Oxford, U.K. - 5. Sambrook, J., Fritsch, E.F., Maniatis, T., 2001, Molecular Cloning-A Laboratory Manual, 3rd edition, Cold Spring Harbor Laboratory Press. - 6. Singh, B.D., 2017, Biotechnology for B.Sc., Kalyani Publishers. - 7. Gupta P.K., 2005, Elements of Biotechnology, Rastogi Publication. ## b. Recommended Reading 1. Wink, M., 2011, An Introduction to Molecular Biotechnology: Molecular Fundamentals, Methods and Applications in Modern Biotechnology, Wiley & Sons. # c. Magazines and Journals 1. https://www.scitechnol.com/advances-in-genetic-engineering-biotechnology.php #### 5. Websites 1. https://www.britannica.com/science/recombinant-DNA-technology # 6. Other Electronic Resources 1. https://facultystaff.richmond.edu/~lrunyenj/bio554/lectnotes/chapter14.pdf Page at 18 lot 24 mics M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 | Course Title | Immunology and Immuno-technology | | |--------------|--|--| | Course Code | BTC302A | | | Department | Biotechnology | | | Faculty | Faculty of Life and Allied Health Sciences | | The aim of the course is to acquaint students with the components, principles and mechanisms of the immune system, and their co-ordination to mount safe and appropriate protection against infection. Students will be able to learn and correlate the complex mechanisms involved in the immune system which governs the diversity, specificity and memory to the system. The students will be facilitated to conceptualize the underlying situations of inappropriate immunity, such as allergy, autoimmunity and immune deficiency. Students will be able to consider discrimination and tuning of immune responses to meet the challenges of different anatomical sites, such as in the skin, gut and lung. Students will be taught on the current and emerging use of immune molecules in diagnostic and clinical intervention strategies, including the therapeutic manipulation of the immune system in cancer treatment, vaccine development, and transplant tolerance. ### 2. Course Size and Credits: | Number of Credits | 5 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of laboratory Hours | 60 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | # Teaching, Learning and Assessment ### 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Describe immune response by explaining the key components and properties involved. - CO 2. Explain the complex mechanism of gene expression pertaining to diversity and specificity of the immune response. - CO 3. Describe the role of immunity in tissue histocompatibility and relate with modern day therapeutic approach. - CO 4. Differentiate the consequences of autoImmunity, hypersensitivity and AIDS. - CO 5. Develop the basic concept in immunization and relate to its application in modern vaccine development. - CO 6. Apply the concept into disease diagnosis and identification. - CO 7. Demonstrate techniques in immunology. Dean - Academics M.S. Ramaiah University of Applied Sciences Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Department of Biological Sciences M S Ramaian University & Lappiled Sciences Bangalore - 560 054 #### 4. Course Contents Theory **Unit 1 Immune Response:** An overview, components of mammalian immune system, molecular structure of Immuno-globulins or Antibodies, Humoral & Cellular immune responses, B & T lymphocytes & immune response (cytotoxic T-cell, helper T-cell, suppressor T-cells), T-cell receptors. **Unit 2 Regulation of immunoglobulin gene expression:** Clonal selection theory, allotypes & idiotypes, allelic exclusion, immunologic memory, heavy chain gene transcription, genetic basis of antibody diversity, hypotheses (germ line & somatic mutation), genome rearrangements during B-lymphocyte differentiation, Antibody class switching, somatic recombination. **Unit 3 Major Histocompatibility Complexes:** Class I & class II MHC antigens, antigen processing, immune response in organ transplantation, Cytokines & Lymphokines. **Unit 4 Immune disorders:** Auto-immune diseases, factors contributing to the development of auto-immune diseases, diagnosis & treatment. Hypersensitivity: Types and mechanisms, diagnosis and treatment, Immunodeficiency, HIV infection, AIDS. **Unit 5 Vaccines & Vaccination:** Adjuvants, cytokines, DNA vaccines, recombinant vaccines, bacterial vaccines, viral vaccines, passive & active immunization, immunization programs & role of WHO in immunization programs. **Unit 6 Concepts of immunotechniques:** Blood grouping, Antigen-Antibody reactions: agglutination, precipitation, immuno-electrophoresis, ELISA, RIA, diffusion (ODD, RID), Hybridoma technology ### **Practical** - Counting of Leucocytes or reticulocytes. - 2. Antigen-Antibody reactions Agglutination (Blood grouping testing) - 3. Antigen-Antibody reactions- Radial Immunodiffusion - 4. Antigen-Antibody reactions- Rocket Immuno-Electrophoresis - 5. Antigen-Antibody reactions and Titration Dot ELISA - 6. Antigen-Antibody reactions and Titration Sandwich ELISA - 7. Antibody titration and identity (Ouchterlony Double Diffusion) - 8. Antigen-Antibody reactions- Immunoprecipitation Reaction - 9. Isolation of Immunoglobulin from serum Page 120 of 211 M.S. Ramaian University of Applied Science Bangaiore - 560 054 M 3 Ramalan Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 # 5. CO-PO PSO Mapping: | <u>8</u> | <u>8</u> 02 | Š | ğ | Š | 80 | P07 | 8 | P09 | PO10 | P04 | P012 | P\$04 | P\$05 | | |----------|-----------------------|--|--|--|---|---
---|---|---|---|---|---|---|---| | 3 | 2 | 1 | - | 1 | | - | 1 | 1 | 1 | - | 1 | 1 | 2 | t | | 3 | 3 | 2 | - | 1 | - | - | 1 | 1 | 1 | - | 3 | 3 | 2 | T | | 1 | 3 | 2 | - | 3 | 147 | - | 1 | 1 | 1 | - | 3 | 1 | 3 | T | | 3 | 2 | 2 | - | 3 | | - | 1 | 1 | 2 | - | 3 | 3 | 2 | T | | 1 | 1 | 2 | - | 3 | S-25 | - | 1 | 1 | 1 | - | 3 | 3 | 3 | Ī | | 1 | 3 | 2 | - | 3 | | - | 2 | 2 | 3 | - | 3 | 3 | 3 | | | 2 | 3 | 3 | - | 2 | 2 | 1 | | - | 1 | - | 1 | 3 | 3 | | | | 3
3
1
3
1 | 3 2
3 3
1 3
3 2
1 1
1 3 | 3 2 1
3 3 2
1 3 2
3 2 2
1 1 2
1 3 2 | 3 2 1 -
3 3 2 -
1 3 2 -
3 2 2 -
1 1 2 -
1 3 2 - | 3 2 1 - 1 3 3 2 - 1 1 3 2 - 3 3 2 2 - 3 1 1 2 - 3 1 3 2 - 3 1 3 2 - 3 | 3 2 1 - 1 - 3 3 2 - 1 - 1 3 2 - 3 - 3 2 2 - 3 - 1 1 2 - 3 - 1 3 2 - 3 - 1 3 2 - 3 - | 3 2 1 - 1 - - 3 3 2 - 1 - - 1 3 2 - 3 - - 3 2 2 - 3 - - 1 1 2 - 3 - - 1 3 2 - 3 - - | 3 2 1 - 1 - - 1 3 3 2 - 1 - - 1 1 3 2 - 3 - - 1 3 2 2 - 3 - - 1 1 1 2 - 3 - - 1 1 3 2 - 3 - - 2 | 3 2 1 - 1 - - 1 1 3 3 2 - 1 - - 1 1 1 3 2 - 3 - - 1 1 3 2 2 - 3 - - 1 1 1 1 2 - 3 - - 1 1 1 3 2 - 3 - - 2 2 | 3 2 1 - 1 - - 1 1 1 3 3 2 - 1 - - 1 1 1 1 3 2 - 3 - - 1 1 1 3 2 2 - 3 - - 1 1 2 1 1 2 - 3 - - 1 1 1 1 3 2 - 3 - - 2 2 3 | 3 2 1 - 1 - - 1 1 1 - 3 3 2 - 1 - - 1 1 1 - 1 3 2 - 3 - - 1 1 1 - 3 2 2 - 3 - - 1 1 2 - 1 1 2 - 3 - - 1 1 1 - 1 3 2 - 3 - - 2 2 3 - | 3 2 1 - 1 - - 1 1 1 - 1 3 3 2 - 1 - - 1 1 1 - 3 1 3 2 - 3 - - 1 1 1 - 3 3 2 2 - 3 - - 1 1 2 - 3 1 1 2 - 3 - - 1 1 1 - 3 1 3 2 - 3 - - 2 2 3 - 3 | 3 2 1 - 1 - - 1 1 - 1 1 3 3 2 - 1 - - 1 1 1 - 3 3 1 3 2 - 3 - - 1 1 1 - 3 1 3 2 2 - 3 - - 1 1 2 - 3 3 1 1 2 - 3 - - 1 1 1 - 3 3 1 3 2 - 3 - - 2 2 3 - 3 3 | 3 2 1 - 1 - - 1 1 - 1 1 2 3 3 2 - 1 - - 1 1 1 - 3 3 2 1 3 2 - 3 - - 1 1 1 - 3 1 3 3 2 2 - 3 - - 1 1 2 - 3 3 2 1 1 2 - 3 - - 1 1 1 - 3 3 3 1 3 2 - 3 - - 2 2 3 - 3 3 3 | # 6. Course Teaching and Learning Methods: | Feaching and Learning Methods | Duration in hours | Total Duration in
Hours | |---|-------------------|----------------------------| | Face to Face Lectures | | 36 | | Demonstrations | | | | Demonstration using Videos | 02 | | | Demonstration using Physical Models | 01 | 03 | | Demonstration on a Computer | | 1 | | Numeracy | | | | Solving Numerical Problems | | | | Practical Work | | | | 1. Course Laboratory | 55 | 1 | | 2. Computer Laboratory | |] | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | 56 | | 5. Hospital | | | | 6. Model Studio | | | | Others | | | | Case Study Presentation | | | | 2. Guest Lecture | | | | 3. Industry / Field Visit | | | | 4. Brainstorming Sessions | | 02 | | 5. Group Discussions | 01 | | | Discussing Possible Innovations | 01 | | | erm Test and Written Examination | | 04+04 | | Total Duration in Hours | | 105 | MS Ramsian University of Applied Sciences Bangalore - 550 054 Page 121 of 211 Dean - Academics M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 # 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | | SEE
(40% Weightage) | | | | | |------|------------------|--------------------------------------|-----------------------------------|-----------------|-----------|--| | | SC1 | SC2 | SC3 | SEE | SEE | | | | (Term Tests) 30% | (Innovative + Lab
assignment) 10% | (Written + Lab
Assignment) 20% | (Theory)
25% | (Lab) 15% | | | | (25 + 25 Marks) | 20 Marks | 40 Marks | 50 Marks | 30 Marks | | | CO-1 | X | X | | Х | | | | CO-2 | X | Х | | Х | | | | CO-3 | X | | Х | Х | | | | CO-4 | | | Х | Х | | | | CO-5 | | | | Х | | | | CO-6 | | Х | Х | | Х | | | CO-7 | | Х | Х | | X | | # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | .No | Curriculum and Capabilities Skills | How imparted during the course | | |-----|------------------------------------|--------------------------------|--| | 1 | Knowledge | Classroom lectures | | | 2 | Understanding | Classroom lectures, self-study | | | 3 | Critical Skills | Assignment | | | 4 | Analytical Skills | Assignment | | | 5 | Problem Solving Skills | Assignment, Examination | | | 6 | Practical Skills | Assignment, Examination | | | 7 | Group Work | | | | 8 | Self-Learning | Self-study | | | 9 | Written Communication Skills | Assignment, examination | | | 10 | Verbal Communication Skills | | | | 11 | Presentation Skills | | | | 12 | Behavioral Skills | | | | 13 | Information Management | Assignment | | | 14 | Personal Management | *** | | | 15 | Leadership Skills | - | | Department of Biotechnology M.S. Ramaiah Final/Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Bangalorg -/560054 Academics Academics Academics Academics Spionces M.S. Raine Bangalore - 500 054 ### 9. Course Resources ## a. Essential Reading - 1. Class notes - 2. Goldsby, R.A., Kindt, T.J., Osborne, B.A., 2007, Kuby's Immunology, 6th Edition, W.H. Freeman and Company, New York. - 3. Abbas, A.K., Lichtman, A.H., Pillai, S., 2007, Cellular and Molecular Immunology, 6th Edition, Saunders Publication, Philadelphia. - 4. Delves, P., Martin, S., Burton, D., Roitt, I.M., 2006, Roitt's Essential Immunology, 11th Edition, Wiley-Blackwell Scientific Publication, Oxford. ## b. Recommended Reading - 1. Murphy, K., Travers, P., Walport, M., 2008, Janeway's Immunobiology, 7th Edition, Garland Science Publishers, New York. - 2. Peakman, M., Vergani, D., 2009, Basic and Clinical Immunology, 2nd Edition, Churchill Livingstone Publishers, Edinberg. - 3. Richard, C., Geiffrey, S., 2009, Immunology, 6th Edition, Wiley Blackwell Publication. # c. Magazines and Journals 1. www.jimmunol.org # e. Websites http://journals.sagepub.com/doi/pdf/10.1177/011542650301800645 Faculty of Life A Allied Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 MS Rams. Should red Sciences M.S. Rar taiah Univesity of Applied Sciences Bangalore - 560 054 | Course Title | Computer Programming: Python and R | |--------------|--| | Course Code | BTC303A | | Department | Biotechnology | | Faculty | Faculty of Life and Allied Health Sciences | This course aims to teach students how to program in three languages popular with the scientific community: bash, R and python, while also using these languages as tools for scientific investigation. Knowing how to program is an indispensable skill within the field of
biology which is increasingly becoming data-driven and interdisciplinary. Fluency in any programming language will give students a competitive advantage against their colleagues who cannot code. Further, these skills will equip our students to start careers in technical fields outside biology, if they so choose. Students taking this course will master the basic concepts required for programming in any language: syntax, if/else statements, loops, functions, recursion, and data input/processing/output. Students will also study elementary algorithm design and complexity (big O notation). Students will work in a linux environment, which is the standard in academia. An introduction to the operating system and use of the terminal / bash scripting will be provided at the beginning of the course. Students will also be taught the R programming language, with a focus on statistical analysis and data visualization. ### 2. Course Size and Credits: | Number of Credits | 5 | |--------------------------------------|-------------------------------| | Total Hours of Classroom Interaction | 45 | | Number of laboratory Hours | 00 | | Number of Semester Weeks | 16 | | Department Responsible | Biotechnology | | Course Marks | 100 | | Pass Requirement | As per university regulations | | Attendance Requirement | As per university regulations | ## Teaching, Learning and Assessment # 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Work in a linux environment. Handle data entry and manipulation. Execute commands via the terminal. - CO 2. Create simple programs using if/else statements and loops in python. - CO 3. Create advanced programs in Python using data structures, functions, classes and objects. - CO 4. Design an algorithm to solve any simple computational task. Understand the algorithm's complexity and optimization avenues. - CO 5. Perform statistical analysis on real-world data using R. Pege 124 of 21ty of Applied Science M.S. Ranjalah University of Applied Science Bangalore - 580 054 Department of Biotechnology M S Ramaian Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Bandalog a 370,054 ### 4. Course Contents **Unit 1 Navigating a linux environment:** Use of the terminal for navigation and executing programs in a Linux environment (Ubuntu); Use of cd, Is, and pwd commands; File and directory organization: touch, mkdir, rm, mv, and cp commands; Viewing file contents; Using text editors: vim, nano, gedlt; Using shell: cat, less, more, head, tail, fold; Searching for file contents; grep and egrep; Data manipulation: cut, paste, sed, awk piping and writing files using bash. **Unit 2 Python:** basic syntax. Elementary syntax and variable types; Scope, and the use of whitespace to control scope; If/else/elif statements, and/or/not operators, nested statements; Switches as an alternative for if/else statements. **Unit 3 Python:** advanced syntax. While/for loops: understanding the concept of iteration; Data structures: lists and dictionaries; Functions; Classes and objects; Data input and output. **Unit 4 Elementary algorithms with python:** Understanding space and time complexity, big-O notation; Prime and fibonacci number generation; sieve of eratosthenes; Pascals triangle and fractals; Binary search; Sorting algorithms: bozosort, bubblesort, and quicksort; Introduction to Numpy: matrices, and vectorization; Introduction to graph theory: implementing and traversing a graph in python. **Unit 5 Statistics with R: Data input and processing with R:** Elementary data visualization in R: Scatterplots, histograms, barplots, boxplots, and vioplots; Elementary statistics with R: mean, median, mode, quartiles, percentiles, correlation, regression lines; Generalized linear models (GLMs): fitting data to a model in R; Hypothesis testing: Understanding P-values. Student's T-test, Fisher's test, ANOVA. # 5. CO-PO PSO Mapping: | | 5 | P02 | S | Ş | Š | õ | 707 | 80 | 80 | Porto | PO11 | P012 | PSO1 | PS02 | 503 | |------|---|-----|---|----|--------|---------|---------|---------|----------|---------|--------|---------|------|------|-----| | CO-1 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | | CO-2 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 2 | 2 | | CO-3 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 2 | 2 | | CO-4 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 2 | 2 | | CO-5 | 3 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 2 | 2 | | | | | - | 3: | High I | nfluenc | e, 2: N | loderat | e Influe | nce, 1: | Low II | nfluenc | е | | | # 6. Course Teaching and Learning Methods: | Teaching and Learning Methods | Duration in hours | Total Duration in
Hours | |-------------------------------|---------------------------------------|----------------------------| | Face to Face Lectures | · · · · · · · · · · · · · · · · · · · | 45 | | Demonstrations | | | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Bangalore - 560 054 Dean - Ac Amics A.S. Ramaiah Univesity of Applied Sciences | Demonstration using Videos | 09 | 31 | |---|------|----| | 2. Demonstration using Physical Models | 02 | 1 | | 3. Demonstration on a Computer | 02 | | | Numeracy | - | | | 1. Solving Numerical Problems | 00 | | | Practical Work | - | | | Course Laboratory | 56 | 1 | | 2. Computer Laboratory | |] | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | 56 | | 5. Hospital | | 1 | | 6. Model Studio | | 1 | | Others | - | | | Case Study Presentation | 02 | 1 | | 2. Guest Lecture | 02 - | 1 | | 3. Industry / Field Visit | | 1 | | Brainstorming Sessions | 02 | 10 | | 5. Group Discussions | 02 | 1 | | Discussing Possible Innovations | 02 | 1 | | rm Test and Written Examination | | 04 | | otal Duration in Hours | | 45 | ## 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | | CE (60% Weightage) | | | | | | | | | |------|-------------------------|-------------------------|-------------------------|---------------------|--|--|--|--|--|--| | | SC1
(Term Tests) 30% | SC2
(Assignment) 10% | SC3
(Assignment) 20% | SEE
(Theory) 25% | | | | | | | | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | | | | | | | | CO-1 | Х | Х | | Х | | | | | | | | CO-2 | X | | | Х | | | | | | | | CO-3 | Х | | Х | Χ, | | | | | | | | CO-4 | | Х | Х | Х | | | | | | | | CO-5 | | Х | | Х | | | | | | | The Course Leader assigned to the course, in consultation with the Head of the Department, shall provide the focus of COs in each component of assessment in the above template at Dean - Academics Dean - Academics Academics Academics N.S. Ramaiah University of Applied Sciences the beginning of the semester. Course reassessment policies are presented in the Academic Regulations document. # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | .No | Curriculum and Capabilities Skills | How imparted during the course | |-----|------------------------------------|---| | 1 | Knowledge | Classroom lectures | | 2 | Understanding | Classroom lectures, Group discussions | | 3 | Critical Skills | Coding Assignment | | 4 | Analytical Skills | Coding Assignment | | 5 | Problem Solving Skills | Coding Assignment | | 6 | Practical Skills | | | 7 | Group Work | Course work, practice, assignment, group discussion | | 8 | Self-Learning | Course work, practice, assignment, group discussion | | 9 | Written Communication Skilis | 84 | | 10 | Verbal Communication Skills | | | 11 | Presentation Skills | | | 12 | Behavioral Skilis | Course work, practice, assignment, group discussion | | 13 | Information Management | Coding Assignment | | 14 | Personal Management | - | | 15 | Leadership Skills | - | | | | | ### 9. Course Resources ## a. Essential Reading - 1. Class Notes - 2. Brown, Martin C. Python: the complete reference. McGraw-Hill Professional, 2001. - 3. Newham, Cameron. Learning the bash shell: Unix shell programming. " O'Reilly Media, Inc.", 2005. - 4. Grolemund, Garrett. Hands-on programming with R: Write your own functions and simulations. "O'Reilly Media, Inc.", 2014. ### b. Recommended Reading - 1. Lutz, Mark. Programming python. " O'Reilly Media, Inc.", 2001. - Dougherty, Dale, and Arnold Robbins. sed & awk: UNIX Power Tools. "O'Reilly Media, Inc.", 1997. - Chambers, John M. Software for data analysis: programming with R. Vol. 2. New York; Springer, 2008. - Schmuller, Joseph. Statistical Analysis with R For Dummies. John Wiley & Sons, 2017. Page 127 of 211 Dean - Academics M.S. Ramalah Univesity of Applied Sciences Bangalore - 560 054 | Course Title | Environmental Biotechnology | | |--------------|--|--| | Course Code | BTE301A | | | Department | Biotechnology | | | Faculty | Faculty of Life and Allied Health Sciences | | This course aims to familiarize students on the principles, techniques and current applications of biotechnology to environmental quality evaluation, monitoring, remediation of contaminated environments and energy production. Students will be taught the basic concepts of environment and climate. They will be acquainted on the biotechnological approaches for remedies of global environmental problems. Students will be taught the concepts of Bioremediation. They will also be familiarized with the protection acts and control management strategies on
various forms of environmental pollution. #### 2. Course Size and Credits: | Number of Credits | 3 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of laboratory Hours | 00 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | ### Teaching, Learning and Assessment # 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Describe the role of microorganisms in biogeochemical cycles. - CO 2. Describe environmental pollutants and their microbial degradation. - CO 3. Explain the fundamentals of bloremediation and the strategies of application. - CO 4. Explain different strategies involved in environmental management with biotechnology approaches. - CO 5. Illuminate on the Environmental Protection Acts and their implication. # 4. Course Contents # Theory **Unit 1 Introduction to Environmental Biotechnology:** Key-microorganisms, role of microorganisms in biogeochemical cycles. Environmental pollutants and their microbial transformation: Organic and inorganic pollutants, Mechanisms of microbial degradation of pollutants. Unit 2 Bioremediation: Fundamentals, methods and strategies of application Head Department of Stotechnology S Ramaian Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M.S. Por rial University of Applied Sciences Bangalore - 560 054 (biostimulation, bioaugmentation) – examples, bioremediation of metals (Cr, As, Se, Hg), radionucleides (U, Te), organic pollutants (PAHs, PCBs, Pesticides, TNT etc), technological aspects of bioremediation (in situ, ex situ). Application of bacteria and fungi in bioremediation: White rot fungi vs specialized degrading bacteria: examples, uses and advantages vs disadvantages. Phytoremediation: Fundamentals and description of major methods of application (phytoaccumulation, phytovolatilization, rhizofiltration phytostabilization). **Unit 3 Environmental Biotechnology and Agriculture:** Bioinsecticides: Bacillus thuringienis, Baculoviruses, uses, genetic modifications and aspects of safety in their use. Biofungicides: Description of mode of actions and mechanisms (e.g. Trichoderma, Pseudomonas fluorescens). Biofertilizers: Symbiotic systems between plants – microorganisms (nitrogen fixing symbiosis, mycorrhiza fungi symbiosis), Plant growth promoting rhizobacteria (PGPR) – uses, practical aspects and problems in application. **Unit 4 Bio-waste treatment:** Microorganisms involved in the degradation of plant fibre, cell wall, lignin, fungal de-lignification and pulping of wood. Pitch problems in pulp and paper processes and solving by enzymes or fungi. Hemicellulases in pulp bleaching. Solving slime problem in the pulp and paper industry. Reduction of organochlorine compounds in bleach plant effluents. Solid wastes: Sources and management, waste as a source of energy. Production of oils and fuels from solid waste, composting, vermiculture, Biogas production, methanol production from organic wastes, byproducts of sugar industries. **Unit 5 Environmental Protection Act:** Environmental Laws, national movements, sustainable development, environmental policies, environmental economics, environmental ethics – holistic approach of environmental protection and conservation, IUCN – role in environmental protection. Environmental Protection Agency (EPA). # 5. CO-PO PSO Mapping: | 80 | <u>8</u> | 5 | P 011 | PO12 | PSO1 | PSO2 | PSO3 | |-----|----------|---|--------------|------|------|---------------------------------|------| | - | * | 3 | - | - | 3 | 1 | 2 | | - | - | 3 | - | - | 3 | 1 | 2 | | - | | 3 | | | 3 | 1 | 2 | | - | | 3 | - | 140 | 3 | 1 | 2 | | - 1 | 3 | 3 | | | 3 | 1 | 2 | | | ate | | | | | ate Influence, 1: Low Influence | | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ro Solid Council Council in its 31st meeting held on 22nd March 2024 M S Ro Solid Council Council in its 31st meeting held on 22nd March 2024 M S Ro Solid Council in its 31st meeting held on 22nd March 2024 M.S. Rantalay University of Applied Sciences Bandatore - 560 054 # 6. Course Teaching and Learning Methods: | eaching and Learning Methods | Duration in hours | Total Duration in
Hours | |---|-------------------|----------------------------| | Face to Face Lectures | | 30 | | Demonstrations | | | | Demonstration using Videos | 02 | 1 | | Demonstration using Physical Models | | 03 | | Demonstration on a Computer | 01 | Ī | | Numeracy | | | | Solving Numerical Problems | | | | Practical Work | | | | 1. Course Laboratory | | | | 2. Computer Laboratory | | | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | | | 5. Hospital | | 1 | | 6. Model Studio | | 1 | | Others | | | | Case Study Presentation | | | | 2. Guest Lecture | | | | 3. Industry / Field Visit | | | | 4. Brainstorming Sessions | | 02 | | 5. Group Discussions | 01 | 02 | | Discussing Possible Innovations | 01 | | | erm Test and Written Examination | | 10 | | otal Duration in Hours | | 45 | ### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | SC1
(Term Tests) 30% | SC2
(Assignment) 10% | SC3
(Assignment) 20% | SEE
(40% Weightage) | |------|-------------------------|-------------------------|-------------------------|------------------------| | €0 | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | | CO-1 | Х | Х | | X | | CO-2 | Х | Х | | X | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Department of elegathnology Remedit with the State of Political Sciences Bengalore - 580 054 Page 130 of 211 Dean - Academics Dean - Academics M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 | CO-3 | Х | Х | Х | Х | |------|---|---|---|---| | CO-4 | Х | | Х | Х | | CO-5 | | Х | Х | X | The Course Leader assigned to the course, in consultation with the Head of the Department, shall provide the focus of course outcomes in each component assessed in the above template at the beginning of the semester. Course reassessment policies are also presented in the Academic Regulations document. # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | How imparted during the course | | |------|------------------------------------|--------------------------------|--| | 1 | Knowledge | Classroom lectures | | | 2 | Understanding | Classroom lectures, self-study | | | 3 | Critical Skills | Assignment | | | 4 | Analytical Skills | Assignment | | | 5 | Problem Solving Skills | Assignment, Examination | | | 6 | Practical Skills | Assignment | | | 7 | Group Work | - | | | 8 | Self-Learning | Self-study | | | 9 | Written Communication Skills | Assignment, examination | | | 10 | Verbal Communication Skills | | | | 11 | Presentation Skills | PR . | | | 12 | Behavioral Skills | | | | 13 | Information Management | Assignment | | | 14 | Personal Management | | | | 15 | Leadership Skills | | | ### 9. Course Resources ### a. Essential Reading - 1. Hurst, C.J., Crawford, R.L., Garland, J.L., Lipson, D.A., Mills, A.L., 2007, Manual of Environmental Microbiology, 3rd edition, ASM Press - 2. Rittman, B., McCarty, P.L., 2000, Environmental Biotechnology: Principles and Applications, 2nd Edition, McGraw-Hill. - 3. Maier, R.M., Pepper, I.L., Gerba, C.P., 2000, Environmental Microbiology, Academic Press. - 4. Alexander, M., 1999, Biodegradation and Bioremediation, 2nd Edition, Academic Press. - 5. Murugesan A.G., Rajakumari, C., 2005, Environmental Science and Biotechnology: Theory and Techniques, 1st Edition, MJP Publishers. - 6. Sharma, P.D., 2005, Environmental Microbiology, Alpha Science International Ltd. - 7. Ramesh, V.K., 2008, Environmental Microbiology, MJP Publishers. Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Ran. Shut phonogy M.S. Ramaiah Univesity of Applied Sciences Bangalore - 560 054 8. Trivedi, P.R., 2004, Environmental pollution and control, APH Publishing Corporation. ## b. Recommended Reading 1. Bitton, G., 1999, Wastewater Microbiology, 2nd Edition, Wiley-Liss. ## c. Magazines and Journals - 1. https://www.omicsonline.org/environmental-biotechnology-open-access-journals.php - http://journals.plos.org/plosone/browse/environmental_biotechnology - 3. https://publons.com/journal/23661/journal-of-petroleum-environmental-biotechnology #### d. Websites - 1. www.dbtindia.nic.in/environment - 2. http://www.biotechonweb.com/environmental-biotechnology.html - 3.http://www.biologydiscussion.com/biotechnology/environmentalbiotechnology/environmental-biotechnology-meaning-applications-and-otherdetails/8528 ### e. Other Electronic Resources - https://www.nature.com/subjects/environmental-biotechnology - 2.https://www.scitechnol.com/scholarly/environmental-biotechnology-journals-articlesppts-list.php Faculty of Life & M.S. RAMAIAH UNIVER STY OF AFPLIED SCIENCES BANGALORE-560 054 Mead Shullton 12:4560,054 Department of Statochnelegy M S Ramaiah Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Page 132 of 211 375CS M.S. Fent. Ish University of Applied Sciences Bangalore - 560 054 | Course Title | Agricultural Biotechnology | |
--------------|--|--| | Course Code | BTE302A | | | Department | Biotechnology | | | Faculty | Faculty of Life and Allied Health Sciences | | The course aims to acquaint students with fundamental concepts in plant biology and their application in agricultural biotechnology. The course will explore the developmental programs involved in generation of body plan in plants, basic biochemistry and physiology unique to the plant system, and the strategies plants employ in countering abiotic and biotic stresses. The course will introduce students to gene cloning in agriculture, and to practical considerations in the development and usage of genetically modified plants relevant to agriculture. ### 2. Course Size and Credits: | Number of Credits | 3 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of tutorials Hours | 00 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | ## Teaching, Learning and Assessment ### 3, Course Outcomes (COs) After the successful completion of this course, the student will be able to: • - CO 1. Summarize the key features of plant cell structure and dynamics that govern their general developmental and growth patterns. - CO 2. Explain the ecological and physiological considerations that determine photosynthetic output in plants under varying conditions. - CO 3. Describe contributions of abiotic and biotic stress-mediated adaptations on plant productivity. - CO 4. Discuss the methods of plant breeding. - CO 5. Describe the techniques and tools in biotechnology used for crop improvement. #### 4. Course Contents ### Theory **Unit 1 Overview of Plant Cells and Body Plan:** Plant life – unifying principles and deviations; Plant cell structure and organelles; Cell wall construction and maintenance; Independently-dividing organelles and their roles; Plasmodesmata; Major tissue systems in plants; Basic body plan and its establishment during embryogenesis; Lifecycle of model plant species; Meristematic tissues – foundations for indeterminate growth; Senescence and Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Raman Advisor Council in its 31st meeting held on 22nd March 2024 M S Raman Advisor Council in its 31st meeting held on 22nd March 2024 M S Raman Advisor Council in its 31st meeting held on 22nd March 2024 M S Raman Advisor Council in its 31st meeting held on 22nd March 2024 M S Raman Advisor Council in its 31st meeting held on 22nd March 2024 M S Raman Advisor Council in its 31st meeting held on 22nd March 2024 M.S. Ramaiah University of Applied Sciences Dean - Academics programmed cell death. **Unit 2 Essentials of Plant Physiology:** Photosynthesis reactions and regulation; Ecological and physiological aspects of photosynthesis in crop plants; Water, solute, and mineral transport and balance; Overview of plant respiration; Importance of select secondary metabolites in plant health. **Unit 3 Plant Responses and Adaptations to Abiotic and Biotic Stresses:** Adaptation and phenotypic plasticity; Abiotic environment and its impact on plant biology; Light-mediated effects on plant growth; Effect of high light stress; Drought and Flooding; Temperature stress; Imbalances in soil minerals; Inherent physiological mechanisms of plants to combat extreme abiotic stresses; Innate immunity in plants; Systemic acquired resistance; Response to plant pathogens; Response to insect pests; Effect of stress on agricultural crop yields. **Unit 4 Plant Breeding:** Central concepts in plant breeding, simple vs complex inheritance; Mating systems, varieties, land races, Pure lines; Methods of plant breeding, self-pollinated species, Outcrossing species, Synthetic varieties, Hybrid varieties, clonally propagated species; Breeding enhancements. **Unit 5 Strategles for crop improvement:** Conventional approaches in plant breeding; Gene cloning and DNA analysis in agriculture; Gene addition; Gene subtraction; Problems with genetically modified plants; Beneficial plant-microbe interactions and their potential in crop improvement; Alternative ways of biological control of crop improvement; Field-testing of genetically modified plants; Future of agricultural biotechnology. ## 5. CO-PO PSO Mapping: | | ᅙ | <u>8</u> | P33 | 5 | 505 | 8 | P07 | 8 | స్ట | <u>8</u> | P04 | PO12 | 2 804 | PSO2 | 8 | |------|---|----------|-----|---|----------|---------|---------|---------|----------|----------|--------|---------|--------------|------|----------| | CO-1 | 3 | 2 | 2 | | - | 1 | - | • | - | 1 | | 1 | 1 | 1 | - | | CO-2 | 3 | 3 | 1 | - | - | - | - | - | - | 1 | - | 1 | 1 | 1 | \vdash | | CO-3 | 3 | 2 | 3 | - | 1 | 2 | - | | | 1 | - | 1 | 1 | 1 | T | | CO-4 | 3 | 3 | 3 | 1 | 3 | - | - | • | - | 3 | - | 1 | 3 | 3 | | | CO-5 | 3 | 3 | 3 | - | 3 | 3 | - | | 3 | 3 | - | 1 | 2 | 2 | | | | | _ | | 3 | : High I | nfluenc | æ, 2: N | loderat | e Influe | ence, 1 | Low Ir | rfluenc | e | | L | ### 6. Course Teaching and Learning Methods: | Feaching and Learning Methods | Duration in hours | Total Duration in
Hours | |-------------------------------------|-------------------|----------------------------| | Face to Face Lectures | | 30 | | Demonstrations | | | | Demonstration using Videos | 02 | 1 | | Demonstration using Physical Models | | 03 | | 3. Demonstration on a Computer | 01 | Ī | Head M.S. Ramaiah Univesity of Applied Sciences | Numeracy | | | |---|----|------| | 1. Solving Numerical Problems | | 1 | | Practical Work | | | | 1. Course Laboratory | | | | 2. Computer Laboratory | | | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | | | 5. Hospital | | 1 | | 6. Model Studio | | | | Others | - | | | Case Study Presentation | | | | 2. Guest Lecture | | | | 3. Industry / Field Visit | | | | 4. Brainstorming Sessions | | 02 | | 5. Group Discussions | 01 | 1 02 | | Discussing Possible Innovations | 01 | | | erm Test and Written Examination | • | 10 | | otal Duration in Hours | | 45 | ### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | | CE (60% Weightage | e) | 055 | |------|-------------------------|-------------------------|-------------------------|------------------------| | | SC1
(Term Tests) 30% | SC2
(Assignment) 10% | SC3
(Assignment) 20% | SEE
(40% Welghtage) | | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | | CO-1 | Х | Х | | Х | | CO-2 | Х | X | | Х | | CO-3 | X | X | Х | Х | | CO-4 | X | | X | Х | | CO-5 | | X | Х | Х | The Course Leader assigned to the course, in consultation with the Head of the Department, shall provide the focus of course outcomes in each component assessed in the above template at the beginning of the semester. Course reassessment policies are also presented in the Academic Regulations document. 0 # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | How imparted during the course | | |------|------------------------------------|--------------------------------|--| | 1 | Knowledge | Classroom lectures | | | 2 | Understanding | Classroom lectures, self-study | | | 3 | Critical Skills | Assignment | | | 4 | Analytical Skills | Assignment | | | 5 | Problem Solving Skills | Assignment, Examination | | | 6 | Practical Skills | Assignment | | | 7 | Group Work | | | | 8 | Self-Learning | Self-study | | | 9 | Written Communication Skills | Assignment, examination | | | 10 | Verbal Communication Skills | | | | 11 | Presentation Skills | - | | | 12 | Behavioral Skills | - | | | 13 | Information Management | Assignment | | | 14 | Personal Management | | | | 15 | Leadership Skills | | | ### 9. Course Resources ### a. Essential Reading - 1. Hurst, C.J., Crawford, R.L., Garland, J.L., Lipson, D.A., Mills, A.L., 2007, Manual of Environmental Microbiology, 3rd edition, ASM Press - 2. Taiz, L., Zeiger, E., 2010, Plant Physiology, 5th Edition, Sinauer Associates Inc., Publishers Sunderland, Massachusetts U.S.A. - 3. Leyser, O. and Day, S., 2003, Mechanisms in Plant Development, Willey-Blackwell - 4. Chrispeels, M. J., Sadava, D.F., (eds.), 2003, Plants, Genes and Crop Biotechnology, - 2nd Edition, Jones and Bartlett Press. - 6. Neal Stewart, C. Jr., 2008, 1st Edition, Plant Biotechnology and Genetics: Principles, Techniques and Applications, John Wiley and Sons, Inc. ## b. Recommended Reading 1. Brown, T.A., 2010, Gene Cloning and DNA Analysis – An Introduction, 6th Edition, John Wiley and Sons, Ltd. ### c. Magazines and Journals 1.https://www.omicsonline.org/scholarly/agricultural-biotechnology-journals-articles-ppts-list.php #### d. Websites M.S. Remail h University of Applied Sciences Bangalore - 560 054 - 1. http://www.fao.org/biotech/biotech-news/en/ - e. Other Electronic Resources - 1. https://agfundernews.com/what-is-agriculture-biotechnology.html M S Ra Final Approval by the Academic Councilin its 31st meeting held on 22nd March 2024 Page 137 of 211 Dean - Academics M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 | Course Title | Medical Biotechnology | | |--------------|--|--| | Course Code | BTE303A | | | Department | Biotechnology | | | Faculty |
Faculty of Life and Allied Health Sciences | | The course aims to acquaint students with fundamental concepts in molecular biology of diseases and the application of biotechnology in the production of therapeutics for diagnosis, prevention and treatment of human diseases and disorders. It encompasses the study of various biological processes, molecular techniques, and emerging nanotechnology approaches that contribute to advancements in therapeutics design and personalized medicine. The course will also introduce basic concepts in drug discovery and clinical research. #### 2. Course Size and Credits: | Number of Credits | 3 | |--------------------------------------|-------------------------------| | Total Hours of Classroom Interaction | 45 | | Number of tutorials Hours | 00 | | Number of Semester Weeks | 16 | | Department Responsible | Biotechnology * | | Course Marks | 100 | | Pass Requirement | As per university regulations | | Attendance Requirement | As per university regulations | ### Teaching, Learning and Assessment # 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Summarize the techniques and applications of biotechnology in disease diagnoses. - CO 2. Explain the production strategies and use of biopharmaceuticals in therapy. - CO 3. Describe, compare, and contrast the strategies used in personalized medicine. - CO 4. Describe the types of and production process of modern vaccines. - CO 5. Explain the principles, technology, and application of nanotechnology in human health care sector. - CO 6. Explain the principles and approaches for drug discovery and clinical research. #### 4. Course Contents ### Theory **Unit 1 Diagnostic Techniques in Medical Biotechnology:** Introduction to clinical diagnosis; Enzymes used for diagnoses; Peptide- and protein-based diagnoses including antibodies; Nucleic acid analysis as diagnostic tool; Features, use, design, preparation, and application of DNA probes; Gene tracking in genetic diseases; medical devices, Applications of the Human Genome Project in clinical diagnoses. M.S. Rambiah University of Applied Science Bangalore - 550 054 Final Approval by the Academic Council in its 31st meeting held on 22sd March 2024 Bangaiore - 560 054 **Unit 2 Therapeutic Applications of Biotechnology:** Antibiotics; Therapeutic proteins – role of enzymes as digestive aid, anti-cancer therapeutics, anticoagulants, anti-allergens, antimicrobials, enzyme replacement therapy, role of therapeutic protein hormones, role of therapeutic cytokines, lymphokines and interferons; Production of biopharmaceuticals from non-recombinant and recombinant organisms; Artificial tissues and organs; Therapeutic oligonucleotides. **Unit 3 Gene Therapy, Antisense Therapy and Personalized Medicine**: Approaches in gene therapy; Somatic vs germline therapy; Targeted gene transfer via viral and non-viral vectors; Disease case studies of successful therapies; Challenges for gene therapy; Basic concept and mechanism involved in antisense therapy; Delivery, stability, bioavailability, and target specificity; Applications and advantages of antisense drugs; precision medicine and electroceuticals, Ethical issues related to personalized medicine. **Unit 4 Biotechnology In Health Care:** Conventional vaccines; Antigen, Recombinant, Live recombinant, peptide, DNA and RNA vaccines; Learnings from COVID epidemic in modern vaccine development; Fertility control; DNA fingerprinting in forensic medicine; DNA Profiling, interpretation of results and applications. **Unit 5 Nanotechnology in medicine:** Introduction; Types and synthesis of nanomaterials; Protein-based nano structures; DNA-based nano structures; Applications of nanomaterial – Nano-biosensors, Drug and gene delivery, Disease diagnostics and therapy, Risk potential of nanomaterial. **Unit 6 Drug Discovery and Clinical Research:** Introduction to drugs, receptors, agonists; Dose response curve, half-life, and clearance; Drug design approaches; Concept and significance of ADME, LD 50 and ED 50, TI; Drug development process (Preclinical, clinical and toxicological studies); Novel Drug Development approaches - QSAR (quantitative structure activity relationship); Clinical trials phases, Regulatory agencies. # 5. CO-PO PSO Mapping: | | δ | P02 | ğ | Ş | 202 | ő | P04 | 80 | 5 | P010 | P041 | P012 | PSOT | PS02 | | |------|---|-----|---|---|----------|---------|----------|---------|-----------|---------|---------|---------|------|------|---| | CO-1 | 3 | 2 | 3 | | 1 | | - | | 1 | 1 | - | 3 | 1 | 1 | T | | CO-2 | 3 | 3 | 3 | - | 1 | - | - | - | 2 | 1 | - | 3 | 1 | 1 | Г | | CO-3 | 3 | 3 | 3 | - | 3 | - | - | | 1 | 1 | - | 3 | 1 | 1 | | | CO-4 | 3 | 3 | 3 | - | 3 | 1 | - | | 1 | 1 | - | 3 | 1 | 2 | Γ | | CO-5 | 3 | 2 | 3 | | 3 | 1 | | | 2 | 1 | - | 3 | 1 | 1 | T | | CO-6 | 3 | 3 | 3 | | 2 | 1 | - | | 2 | 1 | | 3 | 1 | 2 | Γ | | • | | | _ | 3 | : High I | Influen | xe, 2: N | loderal | te Influe | ence, 1 | : Low I | nfluenc | e | | | M SFinal Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Page 139 of 211 Dean - Academics M.S. Famaiah Univesity of Applied Schemes Barraton # 6. Course Teaching and Learning Methods: | Teaching and Learning Methods | Duration in hours | Total Duration in
Hours | |---|-------------------|----------------------------| | Face to Face Lectures | | 36 | | Demonstrations | | | | Demonstration using Videos | 02 | 1 | | Demonstration using Physical Models | | 03 | | Demonstration on a Computer | 01 | 1 | | Numeracy | | | | Solving Numerical Problems | | | | Practical Work | | | | Course Laboratory | | 1 | | 2. Computer Laboratory | | Ť | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | • | | 5. Hospital | | 1 | | 6. Model Studio | | | | Others | | | | Case Study Presentation | | | | 2. Guest Lecture | | | | 3. Industry / Field Visit | | | | 4. Brainstorming Sessions | | 02 | | 5. Group Discussions | 01 | 02 | | Discussing Possible Innovations | 01 | | | erm Test and Written Examination | | 04 | | Total Duration in Hours | | 45 | ### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | | CE (60% Weightage |) | | |------|-------------------------|--------------------------|-------------------------|------------------------| | | SC1
(Term Tests) 30% | SC2
(Aassignment) 10% | SC3
(Assignment) 20% | SEE
(40% Weightage) | | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | | CO-1 | X | X | | X | De Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramaiah Uppersty of Expelied Sciences | CO-2 | Х | Х | | Χ | |------|---|---|---|---| | CO-3 | Х | Х | X | Х | | CO-4 | Х | | Х | X | | CO-5 | | Х | Х | X | | CO-6 | | Χ | X | X | The Course Leader assigned to the course, in consultation with the Head of the Department, shall provide the focus of course outcomes in each component assessed in the above template at the beginning of the semester. Course reassessment policies are also presented in the Academic Regulations document. # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | How imparted during the course | |------|------------------------------------|--------------------------------| | 1 | Knowledge | Classroom lectures | | 2 | Understanding | Classroom lectures, self-study | | 3 | Critical Skills | Assignment | | 4 | Analytical Skills | Assignment | | 5 | Problem Solving Skills | Assignment, Examination | | 6 | Practical Skills | Assignment | | 7 | Group Work | | | 8 | Self-Learning | Self-study | | 9 | Written Communication Skills | Assignment, examination | | 10 | Verbal Communication Skills | | | 11 | Presentation Skills | | | 12 | Behavioral Skills | - | | 13 | Information Management | Assignment | | 14 | Personal Management | - | | 15 | Leadership Skills | _ | ### 9. Course Resources # a. Essential Reading - Jogdand, S.N., 2008, Medical Biotechnology, 2nd Edition, Himalaya publishers. - Brown, T.A., 2010, Gene Cloning and DNA Analysis An Introduction, 6th Edition, John Wiley and Sons, Ltd. - 3. Singh, B.D., 2012, Biotechnology: Expanding Horizons, 4th Edition, Kalyani Publishers Pvt. Ltd. - 4. Pongracz, J., Keen, M., 2008, Medical Biotechnology, 1st Edition, Elsevier publications. - 5. Katzung, B.G., 2004, Basic & Clinical Pharmacology, 9th Edition, Mc Graw Hill Publications. Final Approval by the Adademic Council in its 31st meeting held on 22nd March 2024 M 2 B Applied Sciences Dean - Academics M. Ramaiah University of Applied Science Niemeyer, C.M., Mirkin, C.A., 2003, Introduction to Nanobiotechnology, Wiley VCH publishers. ## b. Recommended Reading - 1. David, S L., 1994, Genetics to Gene Therapy the molecular pathology of human disease, 1st Edition, BIOS scientific publishers. - 2. Levinson, W., Jawetz, E., 2003, Medical Microbiology and Immunology: Examination and Board Review, 7th Edition, McGraw Hill Publications. ## c. Magazines and Journals - 1. https://www.pulsus.com/medical-biotechnology.html - 2. http://www.niscair.res.in/sciencecommunication/researchjournals/rejour/jsir/jsir0.asp ### d. Websites - https://www.nature.com/subjects/biotechnology - 2. https://www.allaboutcareers.com/careers/career-path/biotechnology - 3. https://www.bio.org/what-biotechnology ### e. Other Electronic Resources 1. https://nickrath.weebly.com/openstax-biotechnology.html
Faculty of Life & Alfied Health Sciences M.S. RAMAIAM UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 livorcity of Applied Sciences M.S. Ramaidh Univesity of Applie Rangalore - 560 054 M. S. Ramaiah University of Applied Sciences **Course Specifications** of B.Sc. (Hons) in Biotechnology Programme Code: 018 SEMESTER 6 Department of Biotechnology Faculty of Life and Allied Health Sciences M S Ramaiah University of Applied Sciences Faculty of Life & Airied Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 M S Ran Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M.S. Romaiah University of Applied Sciences Page 143 of 211 | Course Title | Animal Biotechnology and Animal tissue culture | |--------------|--| | Course Code | BTC304A | | Department | Biotechnology | | Faculty | Faculty of Life and Allied Health Sciences | The aim of this course is to equip students with animal cell and tissue culture methodologies and safe practices and acquaint students with principles and use of biotechnology in the area of transgeric animal products and health care. The course also aims to facilitate students on practical aspects of cell culture used in the biotechnology industry for culturing cells and tissue. The students will be trained to develop skills in each step of cell/tissue culture techniques such as aseptic techniques, methods for measuring viability and cytotoxicity, cell culture environment (substrate, gas phase, medium), and the culturing of specific cell lines. The laboratory training emphasizes on hands-on training to gain the skills the principles and practices of initiation, cultivation, maintenance, and the preservation of cell lines. Students will be familiarized with a broad range of technical know-how for the genetic improvement and therapeutic intervention of animal species, by understanding and implementing critical technologies of cloning and genetic engineering. # 2. Course Size and Credits: | Number of Credits | 5 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of laboratory Hours | 60 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | ### Teaching, Learning and Assessment ### 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Explain the theoretical and practical principles of cell culture practices. - CO 2. Explain the various components and techniques of cell and tissue culture media - CO 3. Describe the principles and methods of transgenesis. - CO 4. Illustrate the transgenic techniques used to harness animal products for human welfare. - CO 5. Explain the application of animal biotechnology for animal and human health care - CO 6. Demonstrate basic cell culture techniques including aseptic practices and maintenance of primary and cell line culture - CO 7. Assess cytotoxicity in monolayer cells in culture using suitable cytotoxic agents. Rape 144 of 211 plicit Stierces M.S. Ramaish University of 250 054 Final Approval by the Academic Council in its 31st meeting held on 22rd March 2024 #### 4. Course Contents # Theory **Unit 1 Introduction to Cell Culture Techniques:** Basic instruments of cell culture laboratory, Aseptic techniques- Aseptic Work Station, Precautions to maintain Aseptic Conditions. Media and supplements, Serum and Serum Free Media, Balanced Salt Solutions. Cell viability, cell survival, cytotoxicity. Overview of importance of tissue/cell culture in biotechnology. **Unit 2 Cell Culture techniques:** Primary culture, Methods of disaggregation (mechanical and chemical) and culturing with example of normal and tumour cell culture. Cell line culture, methods of maintenance and preservation of monolayer and suspension culture. Contamination and eradication. **Unit 3 Cell Characterisation:** Overview of parameters of characterisation including DNA profile, Karyotype, Isoenzyme analysis Genome analysis, Gene expression analysis Proteomics, Cell surface Cytoskeleton Immunocytochemistry. **Unit 4 Transgenic animals: methodologies:** Overview of gene transfer techniques: physical, chemical and biological. Genetic Modification: Cre–loxP Recombination System, Transgenesis with High-Capacity Vectors, RNA Interference, Crisper Cas. **Unit 5 Transgenic animals: models:** Animal models for tackling human diseases. Cloning and their importance with reference to livestock and endangered animals. IVF-technology for livestock and humans, Embryo transfer techniques. **Unit 6 Applications of Animal Biotechnology:** Improvement of biomass: Transgenic poultry and fish. Improving Milk Quality, disease resistant livestock, Production of Pharmaceutical products, Production of Donor organs. #### **Practical** - 1. Packing and sterilization of glass and plastic wares for cell culture - 2. Preparation of animal cell culture medium - 3. Isolation of human mononuclear cells and culture of Lymphocyte-Primary culture. - 4. Cell counting Quantitation of cells in culture - 5. Thawing, culturing, sub-culturing and Cryo-preservation of adherent cell line culture. - Cell viability assay for both primary and cell line culture (trypan blue dye exclusion method) - 7. Cytotoxicity assay (MTT assay) for adherent cell line culture. Pagen 145 of 26 thics M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 # 5. CO-PO PSO Mapping: | | 5 | P 02 | ဂ္ဂ | 5 | ဦ | స్ట | P07 | 908
808 | స్ట్ | PO10 | <u>6</u> | P012 | PS01 | PS02 | PSO3 | |------|---|-------------|-----|---|---|-----|-----|------------|------|------|----------|------|------|------|------| | CO-1 | 3 | | | | | | | | | | | | 3 | | | | CO-2 | 3 | | 2 | | 1 | | | 1 | | | 1 | | 3 | | | | CO-3 | 3 | | 1 | | 2 | 2 | 2 | | 1 | 1 | 1 | | 3 | | | | CO-4 | 3 | | 2 | | 2 | 2 | 2 | 2 | 1 | 1 | 1 | | 3 | | | | CO-5 | 3 | | 2 | | | | | 2 | | | 1 | | 3 | | 1 | | CO-6 | 3 | | 2 | | | | | 3 | | | 1 | 2 | 3 | | 1 | | CO-7 | 3 | | 2 | 2 | | | | 3 | | | 1 | 2 | 3 | | 1 | # 6. Course Teaching and Learning Methods: | eaching and Learning Methods | Duration in hours | Total Duration in Hours | |---|-------------------|-------------------------| | Face to Face Lectures | | 36 | | Demonstrations | | | | Demonstration using Videos | 02 | | | Demonstration using Physical Models | 01 | 03 | | Demonstration on a Computer | | | | Numeracy | | | | Solving Numerical Problems | | | | Practical Work | | | | Course Laboratory | 56 | | | 2. Computer Laboratory | | | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | 56 | | 5. Hospital | | | | 6. Model Studio | | | | Others | | | | Case Study Presentation | | 1 | | 2. Guest Lecture | | | | 3. Industry / Field Visit | | 1 | | Brainstorming Sessions | | 02 | | 5. Group Discussions | 01 |] "" | | Discussing Possible Innovations | 01 . | | | erm Test and Written Examination | 7, | 04+04 | | otal Duration in Hours | | 105 | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramaian University constant Bengalore - 560 054 Page 146 of 213 demics Page 146 of 213 demics M.S. R. Vasiah University of Applied Sciences Bangalore - 560 054 ### **Method of Assessment** The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | | CE (60% Weightage) | | | | | | | |------|------------------|-----------------------------------|-----------------------------------|-----------------|-----------|--|--|--| | | SC1 | SC2 | SC3 | SEE | SEE | | | | | | (Term Tests) 30% | (Innovative + Lab assignment) 10% | (Written + Lab
Assignment) 20% | (Theory)
25% | (Lab) 15% | | | | | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | 30 Marks | | | | | CO-1 | X | Х | | Х | | | | | | CO-2 | X | X | | х | | | | | | CO-3 | X | | Х | Х | | | | | | CO-4 | | | Х | Х | | | | | | CO-5 | | Х | | | Х | | | | | CO-6 | | Х | Х | | Х | | | | | CO-7 | | | Х | 1 | Х | | | | # 7. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | No | Curriculum and Capabilities Skills | How imparted during the course | | |----|------------------------------------|--------------------------------|--| | 1 | Knowledge | Classroom lectures | | | 2 | Understanding | Classroom lectures, self-study | | | 3 | Critical Skills | Assignment | | | 4 | Analytical Skills | Assignment | | | 5 | Problem Solving Skills | Assignment, Examination | | | 6 | Practical Skills | Assignment, Examination | | | 7 | Group Work | Seminar | | | 8 | Self-Learning | Self-study | | | 9 | Written Communication Skills | Assignment, examination | | | 10 | Verbal Communication Skills | - | | | 11 | Presentation Skills | Assignment | | | 12 | Behavioral Skills | Group project/seminar | | | 13 | Information Management | Assignment | | | 14 | Personal Management | - | | | 15 | Leadership Skills | Group Project/seminar | | M S Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Shut Mathu Page 147 of 211 Dean - Academics M.S. Ramaiah University of Annual #### 8. Course Resources ### 5. Essential Reading - 1. Class Notes - 2.
NPTEL: Module 6, lecture 1 - 3. ATCC® ANIMAL CELL CULTURE GUIDE tips and techniques for continuous cell lines. - Saurabh Bhatia, Tanveer Naved and Satish Sardana,2019.Introduction to Pharmaceutical Biotechnology, Volume 3 Animal tissue culture and biopharmaceuticals, IOP Publishing. - 5. R. lan Freshney, 2010. A manual of basic technique and specialized applications 6th Edition, Wiley Blackwell. - 6. Glick, B.R., Pasternak, J.J., 2003, Molecular Biotechnology Principles and Applications of recombinant DNA, ASM Press, Washington. - 7. Primrose, S.B., Twyman, R.M., 2006, Principles of Gene Manipulation and Genomics, 7th edition, Blackwell Publishing, Oxford, U.K - 8. Brown, T.A., 2006, Gene Cloning and DNA Analysis, 5th Edition, Blackwell Publishing, Oxford, U.K. - 9. Lab Manual - 10. Portner R. 2007. Animal Cell Biotechnology. Humana Press ### 6. Recommended Reading - 1. Butler, M., 2004, Animal cell culture and Technology, Garland Science/BIOS Scientific Publishers: London and New York - 2. J.Davis. 2002, Basic Cell Culture: A Practical Approach: 254 (Practical Approach Series), OUP Oxford. - 3. J, Masters, 2000, Animal Cell Culture: A Practical Approach: 232 (Practical Approach Series) - 4. Satyanarayana, U., 2008, Biotechnology, Books & Allied Ltd. - 5. Singh, B.D., 2017, Biotechnology for B.Sc., Kalyani Publishers. - 6. Gupta P.K., 2005, Elements of Biotechnology, Rastogi Publication. - 7. Dubey, R.C., 2014, A Textbook of Biotechnology, 5th Edition, S. Chand. - 8. Clark, D.P., Pazdernik, N.J., 2009, Biotechnology-Applying the Genetic Revolution, Elsevier Academic Press, USA. ### 7. Magazines and Journals - https://www.ncbi.nlm.nih.gov/books/NBK207574/ - 2. i biology - Nature Scitable. - 4. Christoph Revermann Leonhard Hennen, Animal cloning. - 5. Janet Rossant, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto; and by Stuart Orkin, Children's Hospital and Dana Farber Cancer Institute, Boston.,The science and application of cloning. #### 8. Websites - 1. https://www.aboutbioscience.org > topics > animal-biotechnology - 2. https://www.youtube.com/watch?v=RpDke-Sadzo - 3. https://www.youtube.com/@thermofisher - 4. https://www.acseduonline.com/courses - 5. https://pubmed.ncbi.nlm.nih.gov/21390641/ Head Definal Approval by the Academic Councilin its 31st meeting held on 22st March 2024 maigh University 550 054 Page 148 of 211 piled Sciences N.S. Ramalah University of Applied Sciences Rangalore - 560 054 | Course Title | Plant Biotechnology and Tissue Culture | | |--------------|--|--| | Course Code | BTC305A | | | Department | Biotechnology | | | Faculty | Life and Allied Health Sciences | | The course aims to provide an advanced understanding of the core principles in plant biotechnology with emphasis on applications in agriculture and human welfare. The course will cover techniques in plant cell, tissue and organ culture and plant genetic engineering. The course will include demonstrations and hands-on training in aseptic culture techniques, usage of cell culture equipment and molecular techniques of generation and selection of genetically modified organisms. ### 2. Course Size and Credits: | Number of Credits | 5 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of laboratory Hours | 60 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | ### Teaching, Learning and Assessment ### 3. Course Outcomes (COs) After undergoing this course students will be able to: - CO 1. Outline the growth processes in plants under in vivo and in vitro conditions - CO 2. Describe the conditions required to culture plant tissues and cells aseptically - CO 3. Compare and contrast the various types of tissue and cell culture techniques and their usage - CO 4. Explain the design of suitable DNA constructs in plant genetic engineering and usage of molecular markers in plant breeding - CO 5. Describe the applications of plant tissue culture in industry and healthcare - CO 6. Describe the applications of plant tissue culture and genetic engineering in agriculture - CO 7. Demonstrate the techniques used in plant tissue culture #### 4. Course Contents #### Theory **Unit 1 Introduction to Plant Tissue Culture:** Basic body plan, growth features and developmental processes in plants; Role of hormones, biosynthesis and signalling in plant development and physiology; Origin and concept of cellular totipotency and polarity; Introduction to callus and suspension cultures Head Page 149 of 21 Jemics M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 **Unit 2 Techniques in Tissue Culture and Culture types:** Laboratory requirements, reagents and equipment, design of working spaces; General techniques; Concept of asepsis; Methods of sterilization; Types of tissue culture media and selection; Media constituents and their role; Small and large-scale cultures; Types of bioreactors **Unit 3 Culture Types and Processes:** Single-cell culture, organ culture, meristem culture, anther/microspore culture, embryo culture, protoplast culture; Uses and applications of different types of cultures; Selection and preparation of explants; Pathways of regeneration – somatic embryogenesis and *de novo* organogenesis; Somatic hybridization and cybridization; Somaclonal variation **Unit 4 Techniques in Plant Genetic Engineering:** Basic concepts in plant gene regulation; *Agrobacterium*-mediated plant transformation, Ti and Ri plasmids; Design of vectors for plant transformation; Chloroplast transformation; Analysis and confirmation of transgene integration; Direct gene transfer methods; RNAi technology; Introduction to types and usage of molecular markers – RFLP, RAPD, SSR, SNP **Unit 5 Plant Tissue Culture Applications:** Haploid/Triploid plants; Pathogen/virus-free plants; Micropropagation; Germplasm storage and Cryopreservation; Production of secondary metabolites – strategies for enhancing production; Production of edible vaccines; Synthetic seed technology; Basic concepts in metabolic engineering **Unit 6 Applications in Agriculture:** Engineering resistance to abiotic (temperature, drought, salinity) and biotic stresses (bacterial, viral, fungal, pest); Engineering quality enhancement (nutritional improvement, biofortification, post-harvest shelf life); Status of transgenic research in India; Safety regulations; Terminator seed technology; Role of Biofertilizers, Biopesticides, Biofungicides and Plant Growth Promoting Rhizobia #### **Practical** - Aseptic culture techniques Sterilization of workspace, tools, glassware and media; preparation of explant, surface sterilization of plant material, basic procedures for aseptic tissue transfer, incubation of culture, - 2. Preparation of culture media Media composition, Nutrients, Hormones - Initiation of callus culture - 4. Isolation of plant protoplasts - 5. Isolation of plant genomic DNA from pea shoot tip/cauliflower by CTAB method - 6. Agrobacterium culture, selection of transformants - Colony PCR of agrobacterium - 8. DNA finger printing method RAPD - 9. DNA finger printing method RFLP - 10. Visualization of Vesicular Arbuscular Mycorrhiza # 5. CO-PO PSO Mapping: | | 8 | P02 | P03 | 支 | PQ. | ğ | P07 | 8 | 90
60 | PO10 | P011 | P012 | PSO1 | PS02 | PSOS | |------|---|-----|-----|---|-----|---|-----|---|----------|------|------|------|------|------|------| | CO-1 | 3 | 1 | 1 | | | | | | | 1 | | | 1 | 1 | 1 | | CO-2 | 3 | 1- | 3 | | | | | | | 1 | | | 1 | 1 | 1 | | CO-3 | 3 | 1 | 3 | | | | | | | 1 | | | 1 | 1 | 1 | D Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Page 150 of 211 M.S. Jah University of Applied Science Bangalore - 560 054 | CO-4 | 3 | 3 | 3 | 2 | 1 | 1 | | 1 | | 2 | 1 | 1 | |------|---|------|-------------|------------|--------|-----------|--------------|-------|---|---|---|---| | CO-5 | 3 | 3 | 3 | 1 | 1 | 1 | | 3 | 1 | 3 | 3 | 1 | | CO-6 | 3 | 3 | 2 | 1 | 1 | 1 | 2 | 3 | 1 | 3 | 3 | 1 | | CO-7 | 3 | 1 | 2 | | 3 | 3 | | 1 | 1 | 3 | 1 | 3 | | | | 3: H | ligh Influe | nce, 2: Mo | derate | Influence | , 1: Low Inf | uence | | | | | # 6. Course Teaching and Learning Methods: | Feaching and Learning Methods | Duration in hours | Total Duration in
Hours | |---|-------------------|----------------------------| | Face to Face Lectures | | 36 | | Demonstrations | | | | Demonstration using Videos | 02 | 1 | | Demonstration using Physical Models | | 05 | | 3. Demonstration on a Computer | 03 | | | Numeracy | | | | Solving Numerical Problems | | 1 | | Practical Work | £ 141 | | | 1. Course Laboratory | 56 | | | 2. Computer Laboratory | | | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | 56 | | 5. Hospital | | | | 6. Model Studio | | | | Others | | | | Case Study Presentation | | | | 2. Guest Lecture | | | | 3. Industry / Field Visit | | | | Brainstorming Sessions | | | | 5. Group Discussions | | | | Discussing Possible Innovations | | | | Term Test and Written Examination | | 04+04 | | Total Duration in Hours | | 105 | ### 7. Method of Assessment The components and subcomponents of course assessment is presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M.S. Ramaiah Univesity of Applied Sciences Bangalore - 560 054 | | | CE (60% Weightage) | | | | | | | |------
------------------|-----------------------------------|-----------------------------------|-----------------|-----------|--|--|--| | | SC1 | SC2 | SC3 | SEE | SEE | | | | | | (Term Tests) 30% | (Innovative + Lab assignment) 10% | (Written + Lab
Assignment) 20% | (Theory)
25% | (Lab) 15% | | | | | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | 30 Marks | | | | | CO-1 | X | X | 4 | x | | | | | | CO-2 | X | Χ | | Х | | | | | | CO-3 | X | | | Х | | | | | | CO-4 | X | | Х | Х | | | | | | CO-5 | | | X | Х | | | | | | CO-6 | | X | Х | | X | | | | | CO-7 | | X | Х | | X | | | | # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | .No | Curriculum and Capabilities Skills | How imparted during the course | | |-----|------------------------------------|--------------------------------|--| | 1 | Knowledge | Classroom lectures | | | 2 | Understanding | Classroom lectures, self-study | | | 3 | Critical Skills | Assignment | | | 4 | Analytical Skills | Assignment | | | 5 | Problem Solving Skills | Assignment, Examination | | | 6 | Practical Skills | Assignment | | | 7 | Group Work | - | | | 8 | Self-Learning | Self-study | | | 9 | Written Communication Skills | Assignment, examination | | | 10 | Verbal Communication Skills | | | | 11 | Presentation Skills | | | | 12 | Behavioral Skills | | | | 13 | Information Management | Assignment | | | 14 | Personal Management | - | | | 15 | Leadership Skiffs | - | | # 9. Course Resources # a. Essential Reading - Lecture Handouts. - 2. Laboratory manual. - 3. Sawahel, W.A., 2017, *Plant genetic transformation technology*, Daya Publishing House, Delhi. M.S. Rama ah Univesity of Applied Science: Rangalore - 560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 - 4. Slater, A., Scott, N.W., Fowler, M.R., 2015, *Plant Biotechnology: the genetic manipulation of plant*, 2nd Edition, Oxford University Press. - 5. Bhojwani, S.S., Razdan M.K., 1986, *Plant Tissue Culture: Theory & Practice*, Elsevier Health Sciences. - 6. Bhojwani, S.S., Dantu, P.K., 2013, *Plant tissue culture: An Introductory text*, Springer, India. ### b. Recommended Reading1 - 1. Smith, R.H., 2012, Plant tissue culture: Techniques and Experiments, 3rd Edition, Academic Press. - 2. Hammond, J., McGravey, P., Yusibov, V., 2000, Plant Biotechnology, Springer verlag. - 3. Purohit S.D., 2013, Introduction to Plant Cell, Tissue and Organ Culture, PHI Learning India Pvt. Ltd. - 4. Hammond, J., McGarvey, P., Yusibov, V., 2000, Plant Biotechnology: new products and applications; Springer. ### c. Magazines and Journals - 1. https://onlinelibrary.wiley.com/journal/14677652 - 2. http://www.kspbtjpb.org/main_eng.html - https://www.nature.com/subjects/plant-biotechnology - https://www.omicsonline.org/scholarly/agricultural-biotechnology-journals-articlesppts-list.php #### d. Websites - 1. https://www.ibiology.org/ - 2. https://www.nature.com/scitable/ Faculty of Life & Allied Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Rote of Applied Sciences Page 153 of 211 Pannel 16 | Course Title | Bioethics, IPR and Biosafety | _ | |--------------|---------------------------------|---| | Course Code | BTC306A | | | Department | Biotechnology | | | Faculty | Life and Allied Health Sciences | | The course aims to familiarize students with the essential concepts of Biosafety, Bioethics and Intellectual Property Rights related to Biotechnology products. Students will be taught to understand the ethical, social, and legal aspects of biotechnology, and they will be familiarized with the importance of biosafety in this field. #### 2. Course Size and Credits: | Number of Credits | 03 | | | |--------------------------------------|-------------------------------|--|--| | Total Hours of Classroom Interaction | 45 | | | | Number of tutorial Hours | 00 | | | | Number of Semester Weeks | 16 | | | | Department Responsible | Biotechnology | | | | Course Marks | 100 | | | | Pass Requirement | As per university regulations | | | | Attendance Requirement | As per university regulations | | | ### Teaching, Learning and Assessment ### 3. Course Outcomes (COs) After undergoing this course, the student will be able to: - CO 1. Describe ethical concerns in various field of Biotechnology - CO 2. Describe the Biosafety rules and regulations implied to Biotechnology products - CO 3. Explain the concepts of IPR related to Biotechnology process and practice - CO 4. Explain the principles of patenting law and protection in the field of Biotechnology #### 4. Course Contents **Unit 1 Bloethics**: Bioethics in Biodiversity, ethics of resource management, impact of patenting on biodiversity rich developing countries. Ethical issues associated with consumptions of genetically modified foods. Ethical implication of human genome project, international ethical and legal issues connected with human genome diversity research. **Unit 2 Ethics in Animal Biotechnology**: for testing of drugs on human volunteers, use of animals for research and testing; animal and human cloning-ethical and social issues, organ transplantation and xeno transplantation **Unit 3 Biosafety**: Biosafety levels, Laboratory safety, Chemical safety, The Cartagena protocol on biosafety. Biosafety management: Key to the environmentally responsible use of biotechnology. Ethical implications of biotechnological products and techniques. Social and ethical implications of biological weapons, Biosafety regulations and national and Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Page 154 of 211 d Sciences M.S. Ramaiah Umrasily of Application Sciences Rappalore - 560 054 international guidelines with regard to rDNA technology, transgenic science, GM crops. Experimental protocol approvals, levels of containment. Guidelines for research in transgenic plants, Unit 4 Good Manufacturing Practice and Good Lab Practices (GMP and GLP): Use of genetically modified organisms (crippling organisms) and their release to environment, Hazardous waste management **Unit 5 Intellectual property rights** - patent, copyright, trade mark, Trade Related aspects of Intellectual Property Rights (TRIPS), General Agreement on Tariffs and Trade (GATT) and Plant Breeders' Right (PBR), World Trade Organization (WTO). IPRs—implications for India **Unit 6 Patents and Patent Laws Patent system** – patenting laws - Legal development-Patentable subjects and protection in biotechnology - patenting living organisms # 5. CO-PO PSO Mapping: | 3 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | |---|-----|-----|-------|---------|-----------|-------------|---------------|-----------------|-------------------|-------------------|---------------------|---|-------------------------| | 3 | 4 | | _ | - | | | 1 | | | | - | | | | - | - ' | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | | | 3 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | | | 3 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | | | 3 | 3 1 | 3 1 1 | 3 1 1 3 | 3 1 1 3 1 | 3 1 1 3 1 1 | 3 1 1 3 1 1 1 | 3 1 1 3 1 1 1 1 | 3 1 1 3 1 1 1 1 1 | 3 1 1 3 1 1 1 1 1 | 3 1 1 3 1 1 1 1 1 1 | | 3 1 1 3 1 1 1 1 1 1 2 2 | # 6. Course Teaching and Learning Methods: | eaching and Learning Methods | Duration in hours | Total Duration in
Hours | |---|---------------------------------------|----------------------------| | Face to Face Lectures | · · · · · · · · · · · · · · · · · · · | 30 | | Demonstrations | | | | Demonstration using Videos | 02 | 1 | | Demonstration using Physical Models | 01 | 03 | | 3. Demonstration on a Computer | | | | Numeracy | | | | Sofving Numerical Problems | | 1 | | Practical Work | | | | 1. Course Laboratory | | | | 2. Computer Laboratory | | | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | | | 5. Hospital | | | Final Approval by the Academic Council in its 315 meeting held on 22nd March 2024 age 155 of 211 | otal Duration in Hours | | 45 | |------------------------------------|-----|------| | erm Test and Written Examination | 10 | | | 6. Discussing Possible Innovations | 01 | | | 5. Group Discussions | 01 | 1 02 | | 4. Brainstorming Sessions | | 02 | | 3. Industry / Field Visit | | | | 2. Guest Lecture | | | | Case Study Presentation | | | | Others | *** | | | 6. Model Studio | | | #### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | | CEE | | | |------|-------------------------|-----------------------|-----------------------|------------------------| | | SC1
(Term Tests) 30% | SC2
Assignment 10% | SC3
Assignment 20% | SEE
(40% Weightage) | | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | | CO-1 | х | Х | | Х | | CO-2 | х | х | | х | | CO-3 | х | Х | Х | х | | CO-4 | X | | X | Х | The Course Leader assigned to the course, in consultation with the Head of the Department, shall provide the focus of course outcomes in each component assessed in the above template at the beginning of the semester. Course reassessment policies are also presented in the Academic Regulations document. ### 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | How imparted during the course | | | | | | |------|------------------------------------
--------------------------------|--|--|--|--|--| | 1 | Knowledge | Classroom lectures | | | | | | | 2 | Understanding | Classroom lectures, self-study | | | | | | | 3 | Critical Skills | Assignment | | | | | | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Page 156 of 21 to demico page 156 of 21 to demico aiat: University of Applied Sciences Bangalore - 560 054 | 4 | Analytical Skills | Assignment. | |-----|------------------------------|-------------------------| | 5 | Problem Solving Skills | Assignment, Examination | | 6 | Practical Skills | Assignment | | 7 | Group Work | | | 8 | Self-Learning | Self-study | | 9 | Written Communication Skills | Assignment, examination | | 10 | Verbal Communication Skills | | | 11 | Presentation Skills | 0.0 | | 12 | Behavioral Skills | | | 13 | Information Management | Assignment | | 14. | Personal Management | | | 15 | Leadership Skills | | #### 9. Course Resources # a. Essential Reading - 1. Stanley, S.A., 2008, Bioethics, Wisdom educational service. - 2. Sateesh, M.K., 2008, Bioethics and Biosafety, I.K International Pvt. Ltd. - 3. Das, H.K., 2010, Text book of Biotechnology, Wiley Publishers. - 4. Goel, D., Parashar, S., 2013, IPR, Biosafety and Bioethics, Pearson Education India. - 5. Nambisan, P., 2017, An Introduction to Ethical, Safety and Intellectual Property Rights Issues in Biotechnology, 1st edition, Academic press, Elsevier. ### b. Recommended Reading 1. Singh, B.D., 2009, Biotechnology, Kalyani publishers. ### c. Magazines and Journals 1. https://www.sciencedaily.com/terms/bioethics.htm ### d. Websites - 1. http://www.ipindia.nic.in/ - http://cipam.gov.in/national-ipr-policy/ #### e. Other Electronic Resources 1. http://www.nguyenthanhmy.com/courses/2013/IP-Bioethics-WIPO.pdf M.S. Ramaiah Univesity of Applied Sciences Bangalore - 550 054 | Course Title | Industrial Biotechnology | |--------------|--| | Course Code | BTE304A | | Department | Biotechnology | | Faculty | Faculty of Life and Allied Health Sciences | This course aims to instill in students a critical awareness and in-depth understanding of the principles, practices, and key concepts relevant to industrial biotechnology. The course aims to provide fundamental insights to exploit enzymes and microbes for the manufacturing of products that have a huge industrial significance. Students will be trained on the theoretical concepts of upstream and downstream processing of industrial products. Considering the tremendous commercial potential of bioprocesses as cost-competitive and environment-friendly alternatives to chemical processes, the course mainly emphasizes on Industrial design and operations ### 2. Course Size and Credits: | Number of Credits | 03 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of laboratory Hours | 00 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | ### Teaching, Learning and Assessment ### 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Illustrate the process that underlie major unit operations used in upstream processing of Industrial products. - CO 2. Explain the methods of strain improvement for the production of economically important microbial products - CO 3. Describe the principles, types, operations, and limitations of Bioreactors. - CO 4. Distinguish the principles involved in the operations used in downstream processing of biotechnological and biopharmaceuticals products. - CO 5. Apply the concepts of downstream processing in the industrial production of primary and secondary metabolites #### 4. Course Contents **Unit 1 Upstream processing:** Criteria for good medium, medium requirements for fermentation processes, carbon, nitrogen, minerals, vitamins and other complex nutrients, oxygen requirements, medium formulation of optimal growth and product formation, examples of simple and complex media, design of various commercial media for industrial fermentations, medium sterilization, sterilization of fermenter and other ancillaries, filter Department of Exchange Council in its 31st meeting held on 22nd March 2024 Shuts Values 654 sterilization of air and media, Microbial growth kinetics: Microbial growth cycle, measurement of growth. **Unit 2 Microbial Strain improvement:** Strain improvement for the selected organism: mutation and screening of improved cultures, random and strategic screening methods, strategies of strain improvement for primary, secondary metabolites with relevant examples. Use of recombinant DNA technology, protoplast fusion techniques for strain improvement of primary and secondary metabolites. Preservation of cultures after strain improvement programme. **Unit 3 Design of bioreactors:** Basic objective of fermenter design, aseptic operation & containment, body construction, agitator and sparger design, baffles, stirrer glands and bearings. Process parameters and measurement techniques: measurement of temperature, pressure and pH, DO, foam etc.; flow rate of liquid and gases; Automation (processes computerization). Validation of Fermenter. **Unit 4 Bioreactor configurations and types**: Bubble column, airlift reactor, packed bed, fluidized bed, trickle bed, Membrane reactor, Photobioreactor, Solid state fermenter, Animal and plant cell bioreactors. Scale up and Scale down studies of bioreactors. Heat and Mass transfer in Bioprocess. **Unit 5 Downstream processing:** Role and importance of downstream processing in biotechnological processes. Problems and requirements of bioproduct purification. Process economy: Economics & Cost cutting strategies, process design criteria for various classes of bioproducts. Downstream processing strategies— extraction, separation, concentration, recovery & purification. **Unit 6 Microbial Products**: Industrial production of Ethyl alcohol, Organic acids (Acetic Acid/ Citric acid/ lactic acid), Enzymes (αamylase, protease), Antibiotics (penicillin, tetracycline) vitamin B12, Insulin and vaccines. # 5. CO-PO PSO Mapping: | | POd | P02 | POS | Ş | POS | 8 | P07 | 80g | P09 | PO10 | P011 | P012 | PSO1 | PS02 | 5000 | |------|-----|-----|---------|---------|---------|--------|---------|----------|--------|-------|------|------|------|------|------| | CO-1 | 3 | 3 | | | | | | | | 1 | | 1 | 3 | 2 | | | CO-2 | 3 | 3 | | | | | | | | 1 | | 2 | 3 | 2 | | | CO-3 | 3 | 3 | 2 | | 3 | | | | 1 | 1 | | 2 | 3 | 2 | | | CO-4 | 3 | 3 | 2 | | 3 | | | | | 2 | | 2 | 3 | 2 | | | CO-5 | 3 | 3 | | | 3 | | | | | | | 2 | 3 | 2 | | | | - | 3:1 | ligh In | fluence | , 2: Mo | derate | Influen | ce, 1: l | ow Inf | uence | | | _ | | - | Final Approval by the Academic Council lodts 8 pareeting held on 22nd March 2024 Page 159 of 211 Dean - Academics M.S. Ramaiah University of Applied Sciences Bangafore - 560 054 # 6. Course Teaching and Learning Methods: | eaching and Learning Methods | Duration in hours | Total Duration in
Hours | |---|-------------------|----------------------------| | Face to Face Lectures | | 31 | | Demonstrations | | | | Demonstration using Videos | 01 | 1 | | Demonstration using Physical Models / Systems | 01 | 02 | | Demonstration on a Computer | | | | Numeracy | | | | Solving Numerical Problems | | | | Practical Work | | | | 1. Course Laboratory | | 1 | | Computer Laboratory | |] | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | • | | 5. Hospital | |] | | 6. Model Studio | | | | Others | 1 | | | Case Study Presentation | | 1 | | 2. Guest Lecture | | 1 | | 3. Industry / Field Visit | 06 | | | Brainstorming Sessions | × | 08 | | 5. Group Discussions | 01 | 1 50 | | Discussing Possible Innovations | 01 | 1 | | erm Test and Written Examination | " | 04 | | otal Duration in Hours | | 45 | ### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. MS Rameish Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Page 160 of 211 Applied Sciences M.S. Rabialah University of Applied Sciences Bangalore - 560 054 | | SC1
Term Tests
30% | SC2
Assignments
10% | SC3
Assignments
20% | SEE
(40% Weightage) | |------|--------------------------|---------------------------|---------------------------|------------------------| | | 25 + 25
Marks | 10 Marks | 40 Marks | 50 Marks | | CO-1 | Х | Х | | Х | | CO-2 | · х | Х | | Х | | CO-3 | Х | Х | X | Х | | CO-4 | Х | | X | Х | | CO-5 | | | Х | X | # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | .No | Curriculum and Capabilities Skills | How Imparted during the course Classroom lectures | | | | | | | |-----|------------------------------------|--|--|--|--|--|--|--| | 1 | Knowledge | | | | | | | | | 2 | Understanding | Classroom lectures, self-study | | | | | | | | 3 | Critical Skills | Assignment | | | | | | | | 4 | Analytical Skills | Assignment | | | | | | | | 5 | Problem Solving Skills | Assignment, Examination | | | | | | | | 6 | Practical Skills | Assignment, Examination | | | | | | | | 7 | Group Work | | | | | | | | | 8 | Self-Learning | Self-study | | | | | | | | 9 | Written Communication Skills
 Assignment, examination | | | | | | | | 10 | Verbal Communication Skills | | | | | | | | | 11 | Presentation Skills | - | | | | | | | | 12 | Behavioral Skills | | | | | | | | | 13 | Information Management | Assignment | | | | | | | | 14 | Personal Management | 195 | | | | | | | | 15 | Leadership Skills | _ | | | | | | | ### 9. Course Resources # a. Essential Reading - 1. Casida, L.E., 1991., Industrial Microbiology, 1st Edition, Wiley Eastern Limited. - 2. Crueger, W., Crueger, A., 2000., Biotechnology: A textbook of Industrial Microbiology, 2nd Edition, Panima Publishing Co., New Delhi. - 3. Patel, A.H., 1996, Industrial Microbiology, 1st Edition, Macmillan India Limited. - 4. Stanbury, P.F., Whitaker, A., Hall, S.J., 2006, Principles of Fermentation Technology, Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Page 161 of 211 Dean - Academics M.S. Ramaiah University of Arminal 2nd Edition, Elsevier Science Ltd ### b. Recommended Reading - 1. Lee, S.Y., Nielsen, J. and Stephanopoulos, G., "Industrial Biotechnology: Products and Processes", John Wiley & Sons, 2016. - 2. Waites, M.J., Morgan, N.L., Rockey, J.S., Higton, G., "Industrial Microbiology: An Introduction" Blackwell, 2001. - 3. Pandey, A., Negi, S., Soccol, C.R., "Current Developments in Biotechnology and Bioengineering: Production, isolation and purification of industrial products", Elsevier, 2016 ### c. Magazines and Journals - 1. https://www.liebertpub.com/loi/ind - 2. https://link.springer.com/journal/10295 - 3. http://www.heraldopenaccess.us/journals/Advances-in-Industrial-Biotechnology/ #### d. Websites - https://www.bio.org/ - https://www.sciencelearn.org.nz/topics/biotechnology ### e. Other Electronic Resources - https://www.wiley.com/WileyCDA/Section/id-420434.html - 2. https://www.omicsonline.org/scholarly/industrial-biotechnology-journals-articles-ppts Faculty of Life & Allied Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 Final Approval by the Academic Council in its 31st meeting held on 22rd March 2024. M.S. Romaian on Page 162 of 211, Applied Sciences Rangalore - 560 03 | Course Title | Pharmaceutical Biotechnology | | |--------------|--|--| | Course Code | BTE305A | | | Department | Biotechnology | | | Faculty | Faculty of Life and Allied Health Sciences | | This course aims to familiarize students on the details of current status and future prospects in biopharmaceuticals. The course aims exposing students to various topics in biopharmaceuticals, including drug design, drug modelling and drug delivery Systems. This course will also discuss the requirement of regulatory bodies in clinical research and ethical issues associated with the same. ### 2. Course Size and Credits: | Number of Credits | 03 | |--------------------------------------|-------------------------------| | Total Hours of Classroom Interaction | 45 | | Number of laboratory Hours | 00 | | Number of Semester Weeks | 16 | | Department Responsible | Biotechnology | | Course Marks | 100 | | Pass Requirement | As per university regulations | | Attendance Requirement | As per university regulations | | • | | ### Teaching, Learning and Assessment ### 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Explain the importance of biopharmaceutical research and development. - CO 2. Summarize the aspects of drug discovery and designing. - CO 3. Explain molecular modelling in drug discovery process. - CO 4. Outline the concepts involved in drug delivery and drug metabolism. - CO 5. Summarize the ethical issues and regulatory bodies involved in clinical trials. # 4. Course Contents Theory **Unit 1. Introduction to Pharmaceutical Biotechnology:** Introduction to Biopharmaceuticals and pharmaceutical biotechnology, Biopharmaceuticals: current status and future prospects, generic and branded biopharmaceuticals, overview of life history for development of biopharmaceuticals **Unit 2. Drug discovery and designing:** Configuration and conformation of drug molecules, rational drug design, various approaches in drug discovery, drug targets and pharmacophores. Physical properties of drugs - physical form, polymorphism, particle size, shape, density, wetting, dielectric constant, solubility, dissolution, organoleptic property and AFinal Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M.S. Romanaly University of Applied Sciences Bangalore - 560 054 their effect on formulation, dissolution, organoleptic property and their effect on formulation **Unit 3. Molecular Modeling in Drug Discovery:** Drug discovery process, Lipinski "rule of 5", partition coefficient. Target identification and validation, lead optimization and validation, Structure and ligand based drug design, Modeling of target-small molecule interaction, Structure Activity Relationship - QSARs and QSPRs **Unit 4. Pharmacokinetics and Pharmacodynamics of Biopharmaceuticals:** Definition, rationales, absorption, distribution and metabolism pathway. Factors governing absorption of drug. Phase I and Phase II pathways of metabolism in liver. Dose response relationship, interspecies scaling. Therapeutic proteins, types, production and heterogeneity of therapeutic proteins **Unit 5. Biopharmaceuticals Based Dellvery Systems:** Novel drug delivery systems for biopharmaceuticals (rate controlled and site specific), concept of responsive or smart drug delivery system, Nanotechnology based delivery of biopharmaceuticals and therapeutics, peptides for intracellular targeting **Unit 6. Regulatory bodies & requirements:** WHO GMP, U.S FDA, Drug regulatory authorities in India, US and Europe, their role and responsibilities. Schedule-Y. Pre-clinical study requirements. Clinical trial phases, Types of trials. Bioethics, ethical principles, Ethical dilemmas in biotechnology research, Institutional ethics committee. Bioavailability and Bio equivalence studies # 5. CO-PO PSO Mapping: | | 5 | <u>8</u> 0 | ద్ద | 충 | Ş | 8 | 704 | జ్ఞ | <u>8</u> | PO10 | P011 | P012 | P\$04 | PS02 | | |------|---|------------|-----|---|---|---|--------------|-----|----------|------|------|------|-------|------|---| | CO-1 | 2 | 2 | 2 | 2 | 3 | - | (4) | - | - | - | 2 | - | 3 | 3 | t | | CO-2 | 2 | 2 | 2 | 3 | 3 | | | - | - | - | | - | 3 | 3 | T | | CO-3 | 2 | 2 | 2 | 3 | 3 | - | | - | - | - | | | 3 | 3 | t | | CO-4 | 1 | 1 | 2 | 2 | 2 | | | | - | - | - | F | 2 | 2 | | | CO-5 | 1 | 1 | 2 | 2 | 2 | | 3 1 | - | 3 | - | | - | 2 | 2 | | #### 6. Course Teaching and Learning Methods: | aching and Learning Methods Duration in hours | | Total Duration in
Hours | |---|-------|----------------------------| | Face to Face Lectures | - to- | 36 | | Demonstrations | | | | Demonstration using Videos | 01 | 1 | | 2. Demonstration using Physical Models | | 02 | | 3. Demonstration on a Computer | 01 | 1 | | Numeracy | | 24 | | Solving Numerical Problems | 01 | 01 | Final Approval by the Academic Council in its 31st meeting held on 22rd March 2024 M.S. Vanajah University of Applied Sciences Bangalore - 560 054 | Practical Work | | | |---|-----|------| | 1. Course Laboratory | | 1 | | 2. Computer Laboratory | | | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | | | 5. Hospital | | | | 6. Model Studio | | | | Others | | | | Case Study Presentation | | | | 2. Guest Lecture | | 1 | | 3. Industry / Field Visit | | | | 4. Brainstorming Sessions | | 02 | | 5. Group Discussions | 01 | 7 02 | | 6. Discussing Possible Innovations | 01 | | | rm Test and Written Examination | -F- | 04 | | tal Duration in Hours | | 45 | ### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | _ | | 055 | | | |------|-----------------------|-----------------------|-----------------------|------------------------| | | SC1
Term Tests 30% | SC2
Assignment 10% | SC3
Assignment 20% | SEE
(40% Weightage) | | | 25 + 25 Marks | 10 Marks | 40 Marks | 50 Marks | | CO-1 | X | X | | Х | | CO-2 | X | X | | Х | | CO-3 | X | X | X | Х | | CO-4 | X | | X | . х | | CO-5 | | | X | Х | # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: Department of Elotechnology Department of Applied Sciences Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Page 165 of 21 jamics Page 165 of 21 jamics Page 165 of Applied Sciences Bandalore - 560 054 | .No | Curriculum and Capabilities Skills | How imparted during the course | | |-----|------------------------------------|-----------------------------------|---| | 1 | Knawledge | Classroom lectures, Assignments | | | 2 | Understanding | Classroom lectures, Assignments | | | 3 | Critical Skills | Assignments | | | 4 | Analytical Skills | Assignments | | | 5 | Problem Solving Skills | Assignments | | | 6 | Practical Skills | == | | | 7 | Group Work | Assignments | | | 8 | Self-Learning | Assignments | Ť | | 9 | Written Communication Skills | Assignment, written examination | | | 10 | Verbal Communication Skills | - | | | 11 | Presentation Skills | Assignments | | | 12 | Behavioral Skills | 100 | | | 13 | Information Management | Assignment | | | 14 | Personal Management | . Classroom lectures, Assignments | | | 15 | Leadership Skills | - | | #### 9. Course Resources ### a. Essential Reading - 1. Walsh, G., 2003,
Biopharmaceuticals: Biochemistry and Biotechnology, 2nd Edition, John Wiley & Sons, Inc. - 2. Crommelin, Daan J. A., Sindelar, Robert D., Meibohm, Bernd (Eds.), 2013, Pharmaceutical Biotechnology, 2nd Edition, Taylor & Francis Group. - 3. Rodney J. Y. Ho, 2013, Biotechnology and Biopharmaceuticals: Transforming Proteins and Genes into Drugs, 2nd Edition, John Wiley & Sons, Inc. - 4. Walsh, G., 2007, Pharmaceutical Biotechnology: Concepts and Applications, John Wiley & Sons, Inc. - 5. Kayser, O., Warzecha, H., 2012, Pharmaceutical Biotechnology: Drug Discovery and Clinical Applications, 2nd Edition. John Wiley & Sons, Inc. #### b. Recommended Reading - 1. Sindelar, R.D., 2002, Pharmaceutical Biotechnology, New York: Taylor & Francis. - 2. Crommelin D. J.A., 1998, Pharmaceutical Biotechnology: An Introduction for Pharmacists and Pharmaceutical Scientist, New York: Taylor & Francis. - 3. Stewart, C.F., & Fleming, R.A., 1989, Biotechnology products: New opportunities and responsibilities for the pharmacist, American Journal of Hospital Pharmacy. #### c. Magazines and Journals 1. https://benthamscience.com/journals/current-pharmaceutical-biotechnology/ Page 166 of 211 Dean - Asadamics M.C. Fra... iah Univasity of Applie Rangalore - 560 054 Final Approval by the Academic Council in its 31st meeting held on 22st March 2024 | Course Title | Competitive Examination Training | | |--------------|--|--| | Course Code | BTM301A | | | Department | Biotechnology | | | Faculty | Faculty of Life and Allied Health Sciences | | This course is designed to prepare students to develop the fundamental skills, problem-solving skills, and research-based analytical skills to compete at the national level entrance examination for their admission into the premier technological and research-oriented Institutes in India. The students will be given the highest level of exposure to how to analyze and solve brainstorming questions in the field of Life Science and Biotechnology in a time-bound slot. It will certainly enhance their fundamental thought process to be a research-mind in their upcoming career. ### 2. Course Size and Credits: | Number of Credits | 02 | |--------------------------------------|-------------------------------| | Total Hours of Classroom Interaction | 60 | | Number of tutorial Hours | 00 | | Number of Semester Weeks | 16 | | Department Responsible | Biotechnology | | Course Marks | 50 | | Pass Requirement | As per university regulations | | Attendance Requirement | As per university regulations | ### **Teaching, Learning and Assessment** ### 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Apply their concepts to solve fundamental questions at the national level entrance (IIT-JAM, GATE and GAT-B) for their master's programme (MS by Research/ MSc) at premier technological and research-based institutes in India. - CO 2. Analyze the research-based problems at the national level entrance (IIT-JAM, GATE and GAT-B) for their master's programme (MS by Research/ MSc) at premier technological and research-based institutes in India - CO 3. Evaluate the analytical questions at the national level entrance (IIT-JAM and JGEEBILS) for their integrated PhD (Int-PhD) programme at premier technological and research-based institutes in India. - CO 4. Solve the aptitude questions at various national level job recruitment processes in the field of Indian Patent and Design or Bureau of Indian Standards etc. #### 4. Course Contents **UNIT 1:** Problem-solving, High throughput analysis and Analytical solutions Biochemistry, Molecular Biology, Recombinant DNA Technology **UNIT 2:** Problem-solving, High throughput analysis and Analytical solutions Methods in Biology, Genetics, Microbiology Page 167 of 211 . grean - Academics M.S. Rarkaiah University of Amelia **UNIT 3:** Problem-solving, High throughput analysis and Analytical solutions Cell Biology, Animal Biology, Plant Biology **UNIT 4:** Problem-solving, High throughput analysis and Analytical solutions Ecology, Evolution, Environmental Science # 5. CO-PO PSO Mapping: | | 5 | P02 | ဦ | 졏 | P05 | 906 | P07 | 80 | 8 | PO10 | P011 | PO12 | PSO1 | PS02 | PSO3 | |------|---|-----|---|---|-----|-----|-----|-----|---|------|------|------|------|------|------| | CO-1 | 2 | 2 | 2 | 3 | 2 | - | - | - | • | 98 | 3 | - | 2 | 3 | | | CO-2 | 2 | 3 | 3 | 3 | 2 | - | | | | | - | - | 2 | 3 | - | | CO-3 | 2 | 3 | 3 | 3 | 2 | - | • | - | - | * | • | - | 3 | 3 | - | | CO-4 | 2 | 2 | 3 | 3 | 3 | | - | 127 | - | 550 | | - | 3 | 3 | | # 6. Course Teaching and Learning Methods: | Topics | | Teaching methods | Hours | |------------|-----|---|-------| | | and | Workshop on entrance preparation strategy | 02 | | Evaluation | | Fundamental problem solving and PYQ discussions | 30 | | | | Analytical problem solving | 18 | | | | Internal mock test | 06 | | | | Evaluation of Report | 04 | | | | Total | 60 | ### 7. Method of Assessment The components and subcomponents of course assessment is presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. Dep Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M.S. Fornalah University of Applied Sciences Bangalore - 560 054 | | | CE (60% V | SEE (40% Weightag | | | | |------|----|-----------|-------------------|----|-----------|--| | | | | | | 100 Marks | | | | 25 | 25 | 25 | 25 | | | | 00-1 | | | | Х | | | | 00-2 | | | | Х | | | | 00-3 | |) | Х | | | | | CO-4 | | | X | | Х | | # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | .No | Curriculum and Capabilities Skills | How imparted during the course | | | | | | |-----|------------------------------------|--------------------------------|--|--|--|--|--| | 1 | Knowledge | Fundamental concepts | | | | | | | 2 | Understanding | Analysis and Discussions | | | | | | | 3 | Critical Skills | Analysis and Discussions | | | | | | | 4 | Analytical Skills | Analysis and Discussions | | | | | | | 5 | Problem Solving Skills | Analysis and Discussions | | | | | | | 6 | Practical Skills | Analysis and Discussions | | | | | | | 7 | Group Work | | | | | | | | 8 | Self-Learning | Analysis and Discussions | | | | | | | 9 | Written Communication Skills | | | | | | | | 10 | Verbal Communication Skills | | | | | | | | 11 | Presentation Skills | | | | | | | | 12 | Behavioral Skills | | | | | | | | 13 | Information Management | | | | | | | | 14 | Personal Management | | | | | | | | 15 | Leadership Skills | | | | | | | #### 9. Course Resources # a. Essential Reading - 1. Lehninger Principles of Biochemistry Nelson and Cox - 2. Molecular Biology of the Gene Watson - 3. Gene Cloning and DNA Analysis TA Brown - 4. Microbiology Prescott - 5. Cell Biology Gerald Karp - 6. Genetics Sunstad and Simmons - 7. Ecology Robert Leo Smith - 8. Medical Physiology Guyton and Hall - 9. Plant Physiology Taiz and Zeiger Department of Biotechic Council in its 31st meeting held on 22nd March 2024 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Page 169 of 211 Dealt Academics ### b. Recommended Reading - 1. MEGA Question Bank Life Science, Biotechnology & Microbiology Kar D - 2. CSIR NET Life Science Solutions and Explanations Kar D - 3. DBT JRF Biotechnology Kar D - 4. ICMR JRF Life Science Kar D - 5. GATE Biotechnology Kar D - 6. GATE Microbiology Kar D - 7. GATE Biochemistry Kar D - 8. Chemistry for GATE Life Science Kar D Faculty of Life Allied Haelth Sciences M.S. FAMALAH UNIVERSITY M.S. FAMALAH UNIVERSITY BARREST COLUMN 1985 Department of Colochastagy M S Ramals Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Academics Page 170 of 211 Applied Sciences LS. Romaiali University of Applied Sciences | Course Title | Seminar | | |--------------|--|--| | Course Code | BTS301A | | | Department | Biotechnology | | | Faculty | Faculty of Life and Allied Health Sciences | | This course is aimed to give students a practice in the critical reading of research articles from scientific journals, and in the oral and visual presentation of scientific information. Students will familiarized with the technical advances in biotechnology. They will be acquainted with the emerging social, ethical and legal considerations related to Biotechnology Research and Development. The student will be taught to conduct a literature review, study methodology, technology, tools, processes used for the implementation of research in Biological/ Life Science. They will be familiarized to summarize and prepare a report followed by a seminar presentation. #### 2. Course Size and Credits: | Number of Credits | 02 | | | | | |--------------------------------------|-------------------------------|--|--|--|--| | Total Hours of Classroom Interaction | 00 | | | | | | Number of tutorial Hours | 60 | | | | | | Number of Semester Weeks | 16 | | | | | | Department Responsible | Biotechnology | | | | | | Course Marks | 50 | | | | | | Pass Requirement | As per university regulations | | | | | | Attendance Requirement | As per university regulations | | | | | ### Teaching, Learning and Assessment ### 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. After undergoing this course students will be able to: Identify a Biotechnology topic in their area of study for seminar through literature review - CO 2. Discuss the importance of topic selected with respect to
research, relevance and its applications in the global and local context - CO 3. Justify the importance of the topic selected to the society. - CO 4. Prepare a detailed essay on the selected topic. #### 4. Course Contents - 1. Identification of Biotechnology topic for seminar in consultation with Course Leader - 2. Conducting a detailed study on the importance and the need for selecting the topic - Conduct literature review on the selected topic with respect to industry practices, relevance and its applications in the global context and also in the National (local) context - 4. Preparation of a detailed essay on the selected topic to bring out the important concepts, outcomes of important research conducted in the selected area, relevance and applications of the topic for a suitable Biotechnology aspect Head Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Page 171 of 211 Dean - Academics M.S. Rammiah University of Ameliad Sciences # 5. CO-PO PSO Mapping: | | <u>S</u> | P02 | Pos | \$ | Ž. | PO6 | PO7 | <u>8</u> | <u>8</u> | PO10 | PO11 | PO12 | PSO | PSO2 | Pso3 | |------|----------|-----|-----|----|----|-----|-----|----------|----------|------|------|------|-----|------|------| | CO-1 | 2 | 2 | | - | - | (*) | | | | - | - | - | 1 | = | 1 | | CO-2 | 2 | 2 | - | - | - | | | - | 1 | 1 | - | | 1 | 2 | | | CO-3 | - | - | 2 | - | 3 | · · | - | | 1 | 1 | - | 3 | | 2 | - | | CO-4 | | - | 2 | | 3 | 020 | | | - | - | _ | 3 | - | 2 | - | # 6. Course Teaching and Learning Methods: | Topics | Teaching methods | | | | | | | | |----------|--|----|--|--|--|--|--|--| | Seminars | Workshop on seminar process | | | | | | | | | | Research work Literature search/ Library hours/ White papers/ company websites | | | | | | | | | | Report Preparation | | | | | | | | | | Presentation preparations | 05 | | | | | | | | | Evaluation of Report and Presentation | 05 | | | | | | | | | Total | 60 | | | | | | | #### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | Focus of Course Learning Outcomes in each component assessed | | | | | | | |--|--------------------|--------------------|--|--|--|--| | | CE (60% Weightage) | SEE (40%Weightage) | | | | | | | 30 Marks | 20 Marks | | | | | | CO-1 | X | | | | | | | CO-2 | X | | | | | | | CO-3 | X | | | | | | | CO-4 | | X | | | | | Deport Final Approval by the Academic Council in its 31st meeting held on 22rd March 2024 M S Ramaiah Final Approval by the Academic Council in its 31st meeting held on 22rd March 2024 Page 172 of 214 mics M.S. Raikaiah University of Applied Sciences Bangalore - 560 054 # 8. Achleving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | .No | Curriculum and Capabilities Skills | How imparted during the course | | | | | | |-----|------------------------------------|--------------------------------|--|--|--|--|--| | 1 | Knowledge | Literature review | | | | | | | 2 | Understanding | Seminar Preparation | | | | | | | 3 | Critical Skills | Seminar Preparation | | | | | | | 4 | Analytical Skills | Seminar Preparation | | | | | | | 5 | Problem Solving Skills | Seminar Preparation | | | | | | | 6 | Practical Skills | | | | | | | | 7 | Group Work | | | | | | | | 8 | Self-Learning | Seminar Preparation | | | | | | | 9 | Written Communication Skills | Report writing | | | | | | | 10 | Verbal Communication Skills | Presentation | | | | | | | 11 | Presentation Skills | Presentation | | | | | | | 12 | Behavioral Skills | | | | | | | | 13 | Information Management | Report writing | | | | | | | 14 | Personal Management | Seminar Preparations | | | | | | | 15 | Leadership Skills | | | | | | | ### 9. Course Resources # a. Essential Reading Kothari, C., Garg, G., 2016, Research methodology, 4th Edition, New Delhi: New Age International (P) Limited, pp.1-183 ### b. Websites - 1. https://pubmed.ncbi.nlm.nih.gov/ - 2. https://scholar.google.com/ # c. Other Electronic Resources 1. EBSCO, SSRN, Google Scholar, Pubmed Head M.S. Ramaiah Univesity of Applied Sciences Bangalore - 550 054 M. S. Ramaiah University of Applied Sciences **Course Specifications** of B.Sc. (Hons) in Biotechnology Programme Code: 018 **SEMESTER 7** Department of Biotechnology Faculty of Life and Allied Health Sciences M S Ramaiah University of Applied Sciences Faculty of Mied Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 Final Approval by the Academic Council in its 31st meeting held on 22™ March 2024 M S Ramaiah University of Applied Sciences Page 174 of 21adomics M.S. Planaiah University of Applied Sciences Bangalore - 560 054 | Course Title | Bioinformatics | |--------------|--| | Course Code | BTC401A | | Department | Biotechnology | | Faculty | Faculty of Life and Allied Health Sciences | This course provides students with a foundational understanding of bioinformatics, emphasizing its practical applications in biological research. Through hands-on experience, students develop proficiency in using a variety of internet applications and biological databases for effective problem-solving. The training covers database searching, protein and DNA sequence analysis, protein function prediction, and phylogenetic tree construction, enhancing students' practical skills in bioinformatics. #### 2. Course Size and Credits: | Number of Credits | 5 | | | | | |--------------------------------------|-------------------------------|--|--|--|--| | Total Hours of Classroom Interaction | 45 | | | | | | Number of laboratory Hours | 60 | | | | | | Number of Semester Weeks | 16 | | | | | | Department Responsible | Biotechnology | | | | | | Course Marks | 100 | | | | | | Pass Requirement | As per university regulations | | | | | | Attendance Requirement | As per university regulations | | | | | ### Teaching, Learning and Assessment # 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Discuss basic concept of bioinformatics and its applications and various biological databases - CO2. Describe sequences analysis approaches - CO3. Discuss on phylogenetic trees and methods and software involved in the construction of phylogenetic trees - CO4. Discuss on structural data bases for analyzing structural genomics and proteomics and approaches to protein structure and function prediction - CO5. Perform sequence analysis including sequence alignment, database search, primer design and restriction mapping - CO6. Analyze protein conformation data from protein data bank - CO7. Interpret the data obtained and enter in laboratory lab note bookList the function of different macromolecules in biological system such as carbohydrate, protein, lipid and nucleic acid. Page 175 of Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramaki visit of the Charles Sciences Bangalore - 560 054 #### 4. Course Contents ### Theory - **Unit 1. Introduction to bioinformatics and computational Biology:** Branches of Bioinformatics, sequencing of genomes, Human Genome project, Applications of Bioinformatics, Biological databases: Introduction, Classification; Biological data retrieval system - **Unit 2. Sequence alignment & database search**: DNA and protein sequence analysis, pair wise sequence alignment, Scoring matrices, FASTA algorithm, BLAST, multiple sequence alignment, database searching using BLAST - **Unit 3. Introduction to phylogenetics: Basic terminology:** taxa, root, leaf, node, tree, branch, clade, dendrogram, cladogram, rooted tree, unrooted tree, scaled tree. Algorithms to construct trees: UPGMA, NJ, and maximum parsimony. Use of phylogenetic trees for inferring the evolutionary relationships between organisms using examples from the literature. - **Unit 4. Protein bioinformatics:** Small molecule databases, protein information resources. Understanding and retrieving data from the protein data bank. Understanding backbone and sidechain dihedral angles: phi (ϕ) , psi (ψ) , omega (ω) , and chi (χ) . Understanding the Ramachandaran map and its applications. - **Unit 5. Protein modelling and design:** Molecular dynamics using GROMACS. Protein Secondary structure and tertiary structure prediction methods. Homology modeling and threading: SWISSmodel. *ab initio* approaches: Rosetta and Alphafold. Critical Assessment of Structure Prediction (CASP) competition. - **Unit 6. Linux and shell scripting:** Introduction to the Linux operating system as a platform for bioinformatics. Navigating via the terminal. Elementary terminal commands: cd, ls, pwd, cut, paste, touch, grep, mv, rm. Introduction to sed and awk. Understanding file I/O and how to pipe commands. Introduction to bash scripting. #### **Practical** - Sequence information resource: Introduction to NCBI, Genbank, Entrez gene, Uniprot - 2. Identification of genes in for Primer Design - 3. Restriction mapping and Primer design - 4. Pair wise comparison of sequences, multiple alignments of sequences - Database search using BLAST - 6. Protein databank retrieval and PDB file format, Visualization of protein structure using Rasmol/Pymol, Ramachandaran map generation. - 7. Homology modelling using SwissMODEL - 8. Bash scripting basics: navigating via the terminal. Head Page:176 of 277 ics M.S. Ran Lish University of Applied Sciences Bangalore - 560 054 # 5. CO-PO PSO
Mapping: | | Σ | 20 | <u>8</u> | 졏 | P05 | 90g | P07 | P08 | 60 | P040 | P041 | P012 | 250
20 | PS02 | 200 | |------|---|----|----------|---|-----|-----|-----|-----|----|------|------|------|-----------|------|-----| | CO-1 | 3 | 1 | 3 | 1 | 3 | 80 | 1 | | 1 | 1 | | 2 | 3 | 2 | 1 | | CO-2 | 3 | 1 | 3 | 1 | 3 | | 1 | - | 1 | 1 | - | 2 | 3 | 2 | | | CO-3 | 3 | 1 | 3 | 1 | 3 | 273 | 1 | - | 1 | 1 | - | 2 | 3 | 2 | | | CO-4 | 3 | 1 | 3 | 1 | 3 | 3. | 1 | - | -1 | 1 | - | 2 | 3 | 2 | | | CO-5 | 3 | 1 | 3 | 1 | 3 | -20 | 1 | - | 1 | 1 | - | 2 | 3 | 2 | | | CO-6 | 3 | 1 | 3 | 1 | 3 | ·*: | 1 | - | 1 | 1 | - | 2 | 3 | 2 | Г | | CO-7 | 3 | 1 | 3 | 1 | 3 | (4) | 1 | | 1 | 1 | - | 2 | 3 | 2 | | # 6. Course Teaching and Learning Methods: | eaching and Learning Methods | Total Duration in
Hours | | |---|----------------------------|-------| | Face to Face Lectures | 36 | | | Demonstrations | | | | Demonstration using Videos | 02 | | | Demonstration using Physical Models | | 05 | | 3. Demonstration on a Computer | 03 | 1 | | Numeracy | | | | Solving Numerical Problems | | 1 | | Practical Work | | | | Course Laboratory | 56 | 1 | | 2. Computer Laboratory | |] | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | 56 | | 5. Hospital | | | | 6. Model Studio | | | | Others | | | | Case Study Presentation | | | | 2. Guest Lecture | | | | 3. Industry / Field Visit | | | | Brainstorming Sessions | | | | 5. Group Discussions | | | | 6. Discussing Possible Innovations | | | | erm Test and Written Examination | | 04+04 | | otal Duration in Hours | | 105 | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M Charles Sciences Bangalore - 560 054 #### 7. Method of Assessment The components and subcomponents of course assessment is presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | CE (60% Weightage) | | | SEE
(40% Welghtage) | | |------|-------------------------|---|--|------------------------|------------------| | | SC1
(Term Tests) 30% | SC2
(Innovative + Lab
assignment) 10% | SC3
(Written + Lab
Assignment) 20% | SEE
(Theory)
25% | SEE
(Lab) 15% | | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | 30 Marks | | CO-1 | X | Х | | Х | | | CO-2 | X | Х | | Х | | | CO-3 | X | | | Х | | | CO-4 | X | | Х | Х | | | CO-5 | | Х | Х | | Х | | CO-6 | | X | Х | | Х | | CO-7 | | Х | Х | | Х | # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | .No | Curriculum and Capabilities Skills | How imparted during the course | | |-----|------------------------------------|--------------------------------|--| | 1 | Knowledge | Classroom lectures | | | 2 | Understanding | Classroom lectures, self-study | | | 3 | Critical Skills | Assignment | | | 4 | Analytical Skills | Assignment | | | 5 | Problem Solving Skills * | Assignment, Examination | | | 6 | Practical Skills | Assignment | | | 7 | Group Work | 04 | | | 8 | Self-Learning | Self-study | | | 9 | Written Communication Skills | Assignment, examination | | | 10 | Verbal Communication Skills | - | | | 11 | Presentation Skills | - | | Page 178 of 21 mics M.S. Ranksiah University of Applied Sciences Bangalore - 560 054 | 12 | Behavioral Skills | - | |----|------------------------|------------| | 13 | Information Management | Assignment | | 14 | Personal Management | _ | | 15 | Leadership Skills | | #### 9. Course Resources # a. Essential Reading - 1. Laboratory manual and Lecture notes - 2. Ghosh, Z., Bibekanand, M., 2008, *Bioinformatics: Principles and Applications*, Oxford University Press. - 3. Pevsner, J., 2009, *Bioinformatics and Functional Genomics*, 2nd Edition, Wiley-Blackwell. - 4. Attawood, T., Smith, P.J., 1999, Introduction to Bioinformatics, Longman Publishers. - 5. Grant, G.R., Ewens, W.J., 2005, Statistical Methods in Bioinformatics: An Introduction, Springer. - 6. Higgins, D., Taylor, W., 2000, Bioinformatics Sequence, Structure and Databanks, Oxford University Press. - 7. Jason Cannon, Shell Scripting: How to Automate Command Line Tasks Using Bash Scripting and Shell Programming Kindle Edition ### b. Recommended Reading 1. Fry, J.C., 1993, Biological Data Analysis. A practical Approach, IRL Press, Oxford. #### c. Magazines and Journals - 1. https://bmcbioinformatics.biomedcentral.com/ - 2. https://www.oxfordjournals.org/nar/database/c/ ### d. Websites https://www.ncbi.nlm.nih.gov/ --- M.S. Ramai U Page 179 of 21 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Department of Applied Sciences M S Ramaian Onversity of Applied Sciences Bangalore - 530 054 | Course Title | Genomics and Proteomics | |--------------|--| | Course Code | BTC402A | | Department | Biotechnology | | Faculty | Faculty of Life and Allied Health Sciences | This course is designed to provide students with a comprehensive understanding of the advanced methodologies in Genomics and Proteomics. Participants will gain proficiency in the fundamental concepts of proteomics, empowering them to identify and compare proteins expressed in a specific genome under distinct conditions. The curriculum emphasizes the study of protein interactions, utilizing acquired knowledge to predict cellular behavior and formulate potential drug targets. Practical skills will be honed through training in genome analysis, encompassing techniques such as DNA sequencing and leveraging cutting-edge technology like mass spectrometry. #### 2. Course Size and Credits: | Number of Credits | 5 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of laboratory Hours | 60 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | ### Teaching, Learning and Assessment # 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO1. Detail the principles and methods of DNA sequencing and whole genome sequencing. - CO2. Describe the different databases available for accessing genomic data of various model organisms. - CO3. Explain the analytical techniques used for studying proteins - CO4. Explain the high-throughput analysis of gene function including Microarrays and Mass spectrophotometric analysis - CO5. Apply gene identification methods to analyze genomic data and analyze sequencing - CO6. Extract and visualize protein-protein interaction data from databases and analyze proteome data - CO7 Estimate protein masses from mass spectrometric data and assemble protein sequences M.S. Ramn on University of Applied Sciences Bangalore - 560 054 #### 4. Course Contents ## Theory **Unit 1 Introduction to Genomics:** Genomes, genomics and transcriptomics, DNA sequencing methods – manual & automated: Maxam -Gilbert and Sanger's method. Pyrosequencing, Genome Sequencing: Shotgun & Hierarchical (clone contig) methods, NGS techniques – Illumina, Oxford Nanopore etc, Discussion of case studies. Unit 2 Managing and Distributing Genome Data: Web based servers and software for genome analysis: ENSEMBL, NCBI genome. Selected Model Organisms' Genomes and Databases **Unit 3 Genome sequence analysis:** Principle, salient features & drawbacks of methods of gene prediction / gene modeling: NCBI ORF finder, GRAIL, GENEMARK, GLIMMER. Promoter prediction methods **Unit 4 Introduction to Proteomics:** Protein structure, Physical interactions that determine the property of proteins, Analytical techniques to study proteins: Sedimentation analysis, gel filtration, SDS-PAGE, Native PAGE; Determination of protein sequence **Unit 5 High-throughput analysis of gene function:** 2D-PAGE, Microarrays, Mass spectrometry: LC-MS, ESI-MS, MS-MS **Unit 6 Protein—protein interactions:** Large scale analysis of protein interactions-yeast two hybrid , CoIP, ChiP, post-translational modification analysis, proteomics databases ### **Practical** - 1. Introduction to Ensembl, Ensembl Genes and Transcripts - 2. Comparative genomics in Ensembl - 3. Model organism databases: Ecocyc, Flybase etc.. - 4. Identification of genes and promoters - 5. Automated sanger DNA sequencing data observations and analysis - Extract protein-protein interactions (PPI) from PPI databases and visualize the PPI in cytoscape - 7. Protein sequence assembly, and calculating protein mass from given mass spec data (m/z values) - 8. Protein analysis tools: ExPASy, etc. ### 5. CO-PO PSO Mapping: | | POd | P02 | బ్ | Ş | S. | 904 | P07 | 8 | 60 | PO10 | P04 | PO12 | PSO1 | PS02 | 503 | |------|-----|-----|----|---|----|-----|-----|---|-----------|------|-----|------|------|------|-----| | CO-1 | 3 | 2 | 3 | 2 | 3 | | 1 | | 1 | 1 | - | 2 | 3 | 2 | | | CO-2 | 3 | 2 | 3 | 2 | 3 | - | 1 | - | 1 | 1 | • | 2 | 3 | 2 | | | CO-3 | 3 | 2 | 3 | 2 | 3 | - | 1 | - | 1 | 1 | - | 2 | 3 | 2 | | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Shintel Joe Applied Sciences | | | | | | 3: Hiç | jh Influ | ence, 2 | 2: Mode | erate In | fluence | , 1: Lo | w Influe | ence | | | |------|---|---|---|---|--------|----------|---------|---------|----------|---------|---------|----------|------|---|---| | CO-7 | 3 | 2 | 3 | 2 | 3 | - | 1 | - | 1 | 1 | - | 2 | 3 | 2 | 2 | | CO-6 | 3 | 2 | 3 | 2 | 3 | -
 1 | - | 1 | 1 | - | 2 | 3 | 2 | 2 | | CO-5 | 3 | 2 | 3 | 2 | 3 | - | 1 | - | 1 | 1 | - | 2 | 3 | 2 | 2 | | CO-4 | 3 | 2 | 3 | 2 | 3 | - | 1 | - | 1 | 1 | - | 2 | 3 | 2 | 2 | # 6. Course Teaching and Learning Methods: | Feaching and Learning Methods | Duration in hours | Total Duration In
Hours | |---|-------------------|----------------------------| | Face to Face Lectures | | 36 | | Demonstrations | * | | | Demonstration using Videos | | 1 | | Demonstration using Physical Models | | 03 | | Demonstration on a Computer | 03 | 1 | | Numeracy | • | 20 | | 1. Solving Numerical Problems | 02 | 02 | | Practical Work | = % | | | 1. Course Laboratory | 56 | 1 | | 2. Computer Laboratory | | | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | 56 | | 5. Hospital | | 1 | | 6. Model Studio | | 1 | | Others | | | | Case Study Presentation | | 1 | | 2. Guest Lecture | | 1 | | 3. Industry / Field Visit | | 1 | | 4. Brainstorming Sessions | | 1 | | 5. Group Discussions | | 1 | | 6. Discussing Possible Innovations | | | | erm Test and Written Examination | | 04+04 | | otal Duration in Hours | | 105 | # 7. Method of Assessment The components and subcomponents of course assessment is presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. Page 182 of 211 Dean - Academics M.S. Ramaiah Univesity of Applied Sciences Bangalore - 560 054 | | Focus of Course | e Learning Outcome | s in each component | assessed | | |------|-------------------------|---|--|------------------------|------------------| | | | SEE
(40% Weightage) | | | | | | SC1
(Term Tests) 30% | SC2
(Innovative + Lab
assignment) 10% | SC3
(Written + Lab
Assignment) 20% | SEE
(Theory)
25% | SEE
(Lab) 15% | | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | 30 Marks | | CO-1 | Х | Х | X | Х | | | CO-2 | X | Х | Х | Х | Х | | CO-3 | X | | Х | Х | | | CO-4 | Х | | X | Х | | | CO-5 | | Х | Х | | Х | | CO-6 | | Х | Х | | Х | | CO-7 | | Х | Х | Х | Х | # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | How imparted during the course | |------|------------------------------------|------------------------------------| | 1 | Knowledge | Classroom lectures | | 2 | Understanding | Classroom lectures, self-study | | 3 | Critical Skills | Assignment | | 4 | Analytical Skills | Classroom, Assignment | | 5 | Problem Solving Skills | Classroom, Assignment, Examination | | 6 | Practical Skills | Laboratory, Assignment | | 7 | Group Work | Assignment | | 8 | Self-Learning | Self-study | | 9 | Written Communication Skills | Assignment, examination | | 10 | Verbal Communication Skills | Assignment | | 11 | Presentation Skills | Assignment | | 12 | Behavioral Skills | - | | 13 | Information Management | Assignment | | 14 | Personal Management | - | | 15 | Leadership Skills | | # 9. Course Resources # a. Essential Reading M S Remain University of Applied Sciences Bangalore - 560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Shruti Maltin Page 183 of 21 Ademics M.S. Ramaiah University of Appared Science Bangalore - 560 054 - 1. Class notes - 2. Lesk, A. 2012, Introduction to Genomics, 2nd Edition, Oxford University Press. - 3. Primrose, S.B., Twyman, R.M., Old, R.W., 2001, *Principles of Gene Manipulation*, 6th Edition, Blackwell Science. - 4. Primrose, S.B., 1987, Modern Biotechnology, 2nd Edition, Blackwell Publishing. - 5. Nelson, D.L. and Cox, M.M., "Lehninger Principles of Biochemistry", 6th edition, W.H. Freeman. - 6. Voet, D. and Voet, J. G., "Biochemistry" 3rd edition, John Wiley and Sons. - 7. Twyman, R. (2004). Principles of Proteomics (1st ed.). Taylor & Francis. - 8. Srivasatava S., (2023), From proteins to proteomics: basic concepts, techniques, and applications, CRC Press, Taylor & Francis. - Liebler, Daniel C. (2002) Introduction to proteomics: tools for the new biology, Humana Press # b. Magazines and Journals - 1. https://www.ncbi.nlm.nih.gov/labs/journals/hum-genomics-proteomics/ - 2. https://www.ncbi.nlm.nih.gov/pmc/journals/1314/ - 3. https://www.oxfordjournals.org/nar/database/c/ ### c. Websites - 1. https://www.ncbi.nlm.nih.gov/ - 2. https://www.ensembl.org/index.html - 3. https://www.expasy.org/ Faculty of Life & Alied Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Deposit Factor Madical Sciences Bangaiaro - Dia 194 Page 184 of 211 Dean - Accdemics M.S. Ramalah University of Applied Sciences Bangalore - 560 054 | Course Title | Research Methodology | | | | |---------------------|--|--|--|--| | Course Code BTC403A | | | | | | Department | Biotechnology | | | | | Faculty | Faculty of Life and Allied Health Sciences | | | | # 1. Course Summary This course aims to train the students on principles of research methodology for research in Biotechnology. The students will be trained to perform literature review, identify gaps and formulate a research problem using appropriate research methodology. They will be also taught about various types of research, sampling methodologies, data collection tools and methods, data analysis and Interpretation. Students will also be introduced to scientific writing and ethics of research. ### 2. Course Size and Credits: | Number of Credits | 3 | | | | | | |--|-------------------------------|--|--|--|--|--| | Total Hours of Classroom Interaction • | 45 | | | | | | | Number of laboratory Hours | 00 | | | | | | | Number of Semester Weeks | 16 | | | | | | | Department Responsible | Biotechnology | | | | | | | Course Marks | 100 | | | | | | | Pass Requirement | As per university regulations | | | | | | | Attendance Requirement | As per university regulations | | | | | | ### Teaching, Learning and Assessment # 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Describe the research process. - CO 2. Identify research gap and formulate a research problem. - CO 3. Determine research design for the research objectives. - CO 4. Discuss sampling methodologies, data collection and validation methods relevant to research objectives. - CO 5. Describe methods of statistical data analysis and interpretation. - CO 6. Discuss the process of scientific writing and ethical aspects ## 4. Course Contents ### Theory **Unit 1 Introduction to Research Methods:** Definition of research, objectives and characteristics of good research, applications and types of research, various steps of a research process. Collecting and reviewing the literature, conceptualization and formulation of a research problem, identifying variables and constructing hypothesis Unit 2 Research Design and Design survey: Selecting and defining a research problem, Page 185 of 211 Deay - Academics M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 need for and features and types of research design. Census V/s Sample enumerations, objectives and principles of sampling, Types of sampling, Sampling and Non-sampling errors. Designing questionnaires and interviews. Determination of the sample size. **Unit 3 Measurement of Scaling Concepts:** Scales of measurements, nominal, ordinal, internal and ratio scales, Errors in measurements. **Unit 4 Data Collection & Analysis:** Introduction, sources of data, primary and secondary data collection, differences between qualitative and quantitative Data, Designing the experiment with relevance of statistical background, Recording observations, Defining hypothesis- Null/Alternate, Statistical analysis: mean, median mode, SD, SE, ANOVA, F-test, t-test, Chi-square test etc., Interpretations of statistical parameters **Unit 5 Scientific writing and communication:** Literature review, Components of a paper, writing for journals, conference proceedings, thesis; referencing and various formats for reference writing, Bibliography, journal impact factor, citation index, h-index, reading a scientific paper, presenting in seminars, posters, conferences, and workshops. **Unit 6: Ethics in research:** Research Ethics, Importance, Ethical issues and codes of research conduct, role of research ethics committee. # 5. CO-PO PSO Mapping: | | 5 | 6 05 | PO3 | Ş | POS | 90g | P07 | 20 | <u>8</u> | PO40 | P011 | P012 | PS01 | PS02 | PSO3 | |------|------|-------------|-----|---|-------|----------|---------|---------|----------|---------|----------|---------|------|------|------| | CO-1 | 3 | 3 | 2 | - | 2 | | | 2 | - | 1 | 1 | - | 3 | 2 | 1 | | CO-2 | 2 | 3 | 2 | 1 | 3 | 1 | | 1 | - | | - | 1 | 2 | 3 | 2 | | CO-3 | 1000 | 3 | - | 2 | 3 | - | 0.50 | 2 | - | | 1 | - | 2 | 3 | 1 | | CO-4 | 1 | 2 | 2 | 3 | 3 | - | | 2 | - | 1 | - | - | 3 | 3 | 1 | | CO-5 | 1 | 2 | 2 | 3 | 3 | - | | 2 | - | 1 | - | - | 1 | 2 | 3 | | CO-6 | 1 | - | * | - | - | 3 | 3 | 2 | 3 | - | 1 | 1 | 2 | 1 | 3 | | | | | | | 3: Hi | gh Influ | ence, 2 | 2: Mode | erate In | fluence | e, 1: Lo | w Influ | ence | | | ## 6. Course Teaching and Learning Methods: | eaching and Learning Methods | Duration in hours | Total Duration in
Hours | | |-------------------------------------|-------------------|----------------------------|--| | Face to Face Lectures | | 36 | | | Demonstrations | | | | | 1. Demonstration using Videos | | 1 | | | Demonstration using
Physical Models | 01 | 02 | | | 3. Demonstration on a Computer | 01 | 1 | | | Numeracy | | 02 | | | Solving Numerical Problems | 02 | 02 | | Deps:Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 malan United Sciences Page 186 of 211 and S M.S. Ramach United by Of Author S | Practical Work | | | |---|----|------| | 1. Course Laboratory | | | | 2. Computer Laboratory | | | | 3. Engineering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | 1 | | 5. Hospital | | | | 6. Model Studio | | | | Others | 10 | | | Case Study Presentation | | | | 2. Guest Lecture | | | | 3. Industry / Field Visit | |] 03 | | 4. Brainstorming Sessions | 01 |] 03 | | 5. Group Discussions | 01 | 1 | | Discussing Possible Innovations | | | | erm Test and Written Examination | * | 04 | | otal Duration in Hours | | 45 | ### 7. Method of Assessment The components and subcomponents of course assessment is presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | Focus of Course | Focus of Course Learning Outcomes in each component CE (60% Weightage) | | | | | | | | |------|-------------------------|---|--|----------|--|--|--|--|--| | | SC1
(Term Tests) 30% | SC2
(Innovative + Lab
assignment) 10% | SC3
(Written + Lab
Assignment) 20% | 50 Marks | | | | | | | | (25 + 25 Marks) | 10 Marks | 40 Marks | | | | | | | | CO-1 | X | Х | | X | | | | | | | CO-2 | X | Х | | Х | | | | | | | CO-3 | X | Х | X | Х | | | | | | | CO-4 | Х | | X | Х | | | | | | | CO-5 | | | Х | Х | | | | | | | CO-6 | | | Х | X | | | | | | # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | How imparted during the course | | | | | | | |------|------------------------------------|--|--|--|--|--|--|--| | 1 | Knowledge | Classroom lectures, Assignment | | | | | | | | 2 | Understanding | Classroom lectures, Assignment | | | | | | | | 3 | Critical Skills | Assignment | | | | | | | | 4 | Analytical Skills | Assignment | | | | | | | | 5 | Problem Solving Skills | Assignment, | | | | | | | | 6 | Practical Skills | * | | | | | | | | 7 | Group Work | Group discussions, Brain storming sessions | | | | | | | | 8 | Self-Learning | Class material, Assignments | | | | | | | | 9 | Written Communication Skills | Assignments, written examination | | | | | | | | 10 | Verbal Communication Skills | Group discussions, Brain storming sessions | | | | | | | | 11 | Presentation Skills | Group discussions, Brain storming sessions, Assignment | | | | | | | | 12 | Behavioral Skills | | | | | | | | | 13 | Information Management | Assignments | | | | | | | | 14 | Personal Management | Class room lectures, Assignments | | | | | | | | 15 | Leadership Skills | Group discussions | | | | | | | ### 9. Course Resources ### a. Essential Reading - 1. Class notes - 2. Gurumani, N., 2021, Research Methodology for Biological sciences, MJP Publishers - RK. Jain., 2021, Research Methodology: Methods And Techniques, Vayu education of India - 4. Soumitro Banerjee., 2022, Research Methodology for Natural Sciences, IISc press ### b. Recommended Reading - 1. Black, JMW. (2017). The science of stem cells. 1 st , Edition, Wiley Blackwell publishers. - 2. Warburton, D. (2014). Stem Cells, Tissue Engineering and Regenerative Medicine. 1st Edition. World Scientific publishing Co. Pvt. Ltd. - 3. Sell, S. (2013). Stem Cells Handbook. 1st edition. 2013. - 4. Urgess, R. (2016). Stem Cells: A Short Course . 1 stEdition, Wiley Blackwell Publishers. - Lanza, R. Langer, R. Vacanti, J. Principles of Tissue Engineering (2013). 4th edition. Academic Press. - 6. Bronzino, JD., Peterson, DR. (2015). The Biomedical Engineering Handbook 4 th edition, CRC Press Taylor & Francis. Page 188 of 211 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Bangalore - 568 054 - c. Magazines and Journals - 1. https://www.cell.com/cell/collections/stem-cells - d. Magazines and Journals - 1. https://nptel.ac.in/courses/102106036 Ď Faculty of Life & Alliad Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 | Course Title | Stem Cell and Tissue Engineering | | |--------------|----------------------------------|--| | Course Code | BTE401A | | | Department | Biotechnology | | | Faculty | Life and Allied Health Sciences | | ## 1. Course Summary The aim of the course is to familiarize student with the concept of stem cells, potency and how they relate to development and homeostasis. Students will also be familiarized with the underlying developmental biology principles from fertilization to differentiated cell types. In addition, students will be able to understand the principle of tissue engineering and how stem cells can be applied in medical research and disease treatments. # 2. Course Size and Credits: | Number of Credits | 3 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of laboratory Hours | 00 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biofechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | # Teaching, Learning and Assessment ### 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Understand the basic principles of developmental biology. - CO 2. Identify characteristic features of Stem cells, their origin, maintenance and regulation. - CO 3. Develop the methods of bio-amplification of stem cells for therapeutic use - CO 4. Propose the use of stem cells in tissue engineering. - CO 5. Evaluate the ethical and social concerns associated with stem cell clinical applications. ### 4. Course Contents ## Theory Bangalore - 500 064 **Unit 1 Introduction to Development**: Model organisms- vertebrate and invertebrates, Early development (fertilization, totipotency, and pluripotency), Gastrulation and lineage commitment, Mechanisms of cell fate determination, Specification and development of primordial germ cells. Depart Final Approval by the Academic Council in its 31* meeting held on 22nd March 2024 M S Resolution of Sciences M.S. Ramaiah Page 190 of 211 **Unit 2 Introduction to Stem cells:** Basics properties of stem cells, stem cell types (embryonic, fetal, adult/tissue), Stem cell niche, Cell cycle regulation in stem cells, Stem cell markers, *in vitro* and *in vivo* assays used to identify and isolate stem cells. **Unit 3 Ceil and Gene Therapy:** Principle of cell and gene therapy, Hematopoietic and Mesenchymal stem cells, iPSCs, Different vector system for gene delivery, Overview of gene editing tools. **Unit 4 Clinical applications of stem cells:** Uses of stem cells for metabolic diseases and genetic diseases, Plasticity and Trans-differentiation, Clinical trials, Cancer stem cells and their impact on chemotherapies. **Unit 5 Tissue engineering:** Basic concept, scaffolds, bioreactors, Tissue and Organ fabrication, Use in therapeutics- bone tissue engineering, Engineered skin substitutes. **Unit 6 Ethical issues in Stem Cell Research:** Stem cell therapy guidelines, Embryo Ethics, Ethics of egg donation, Ethics of gene editing, Access to stem cell therapies. # 5. CO-PO PSO Mapping: | | ፩ | P02 | PO3 | ğ | P05 | P06 | P07 | PO8 | P09 | PO10 | P011 | PO12 | PSO1 | PS02 | PSO3 | |------|---|-----|------|---|--------|----------|---------|--------|----------|---------|---------|---------|------|------|------| | CO-1 | 3 | | 130 | - | | | | | | - | - | - | - | | 1 | | CO-2 | 3 | 1 | :0:2 | - | | - | - | | - | | | - | - | - | 1 | | CO-3 | 3 | 1 | 1 | - | 1 | | • | | - | 1 | * | - | 3 | 2 | 1 | | CO-4 | 3 | 2 | 1 | - | 1 | - | - | | 2 | 2 | 1 | 1 | 3 | 2 | 1 | | CQ-5 | 3 | 2 | 1 | - | 3 | | - | | 2 | 2 | 1 | 1 | 3 | 2 | 2 | | | | | | | 3: Hig | gh Influ | ence, 2 | : Mode | erate In | fluence | , 1: Lo | w Influ | ence | · | | # 6. Course Teaching and Learning Methods: | aching and Learning Methods | Duration in hours | Total Duration in
Hours | |-------------------------------------|-------------------|----------------------------| | Face to Face Lectures | 1 | 31 | | Demonstrations | | | | 1. Demonstration using Videos | 03 | 1 | | Demonstration using Physical Models | | 03 | | 3. Demonstration on a Computer | | | | Numeracy | 11 | | | 1. Solving Numerical Problems | | <i>=</i> | | Practical Work | | | M.S. Ramylah University of Applied Science Bangalore - 560 054 | otal Duration in Hours | | 45 | |---|----|----| | erm Test and Written Examination | | 04 | | Discussing Possible Innovations | 01 | | | 5. Group Discussions | 03 | | | 4. Brainstorming Sessions | | | | 3. Industry / Field Visit | | 07 | | 2. Guest Lecture | 02 | 07 | | Case Study Presentation | 01 | | | Others | | | | 6. Model Studio | | 1 | | 5. Hospital | | | | 4. Clinical Laboratory | | ij | | 3. Engineering Workshop / Course/Workshop / Kitchen | | 0 | | 2. Computer Laboratory | | | | Course Laboratory | | | # 7. Method of Assessment The components and subcomponents of course assessment is presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The
assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | 1 | Focus of Course Learning Outcomes in each componer CE (60% Weightage) | | | | | | |------|----------------------------|---|--|------------------------|------------------|--|--| | | SC1
(Term Tests)
30% | SC2
(Innovative + Lab
assignment) 10% | SC3
(Written + Lab
Assignment) 20% | SEE
(Theory)
25% | SEE
(Lab) 15% | | | | | (25 + 25 Marks) | 10 Marks | 40 Marks | 50 Marks | 30 Marks | | | | CO-1 | х | х | | х | | | | | CO-2 | х | х | | х | | | | | CO-3 | Х | х | Х | Х | | | | | CO-4 | х | | X | Х | | | | | CO-5 | 127 | | х | Х | | | | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Remidien by Bangalore 550 6- Page 192 of 211mics W.S. Ramaiah University of Applied Sciences Bangalore - 560 054 # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | How imparted during the course | | |------|------------------------------------|--------------------------------|--| | 1 | Knowledge | Classroom lectures | | | 2 | Understanding | Classroom lectures, self-study | | | 3 | Critical Skills | Assignment | | | 4 | Analytical Skills | Assignment | | | 5 | Problem Solving Skills | Assignment, Examination | | | 6 | Practical Skills | Assignment | | | 7 | Group Work | • | | | 8 | Self-Learning | Self-study | | | 9 | Written Communication Skills | Assignment, examination | | | 10 | Verbal Communication Skills | _ | | | 11 | Presentation Skills | - | | | 12 | Behavioral Skills | - | | | 13 | Information Management | Assignment | | | 14 | Personal Management | | | | 15 | Leadership Skills | - | | | | | | | ## 9. Course Resources # a. Essential Reading - 1. Class notes - 2. Gilbert, SF. Developmental Biology. Eight edition. Sinauer Associates, Inc., Publishers Sunderland, Massachusetts USA - 3. Lanza, R. and Atala, R(2013). Essentials of Stem Cell Biology (Eds.). 3rd Edition. Academic Press # b. Recommended Reading - 1. Black, JMW. (2017). The science of stern cells. 1st , Edition, Wiley Blackwell publishers. - 2. Warburton, D. (2014). Stem Cells, Tissue Engineering and Regenerative Medicine, 1st Edition. World Scientific publishing Co. Pvt. Ltd. - 3. Sell, S. (2013). Stem Cells Handbook. 1st edition. 2013. - Burgess, R. (2016). Stem Cells: A Short Course. 1st Edition, Wiley Blackwell Publishers. - 5. Lanza, R. Langer, R. Vacanti, J. Principles of Tissue Engineering (2013). 4th edition. Academic Press. M.S. Romaiahdoniverily of Applied Science - 6. Bronzino, JD., Peterson, DR. (2015). The Biomedical Engineering Handbook 4th edition. CRC Press Taylor & Francis. - c. Magazines and Journals - 1. https://www.cell.com/cell/collections/stem-cells - d. Websites - 1. https://nptel.ac.in/courses/102106036 Faculty of Life & Allied Health Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 Department of Biotschnology M S Ramaiah Final Approval by the Academic Council in its 31st meeting held on 22rd March 2024 Chapter March 204 Dean - Academics Dean - Academics Applied Sciences A.S. Rang Page 194 of 211 Bangalore - 550 054 | Course Title | Nanobiotechnology | | |--------------|--|--| | Course Code | BTE402A | | | Department | Biotechnology | | | Faculty | Faculty of Life and Allied Health Sciences | | ### 1. Course Summary This course aims to familiarize students with the latest developments in the field of nanobiotechnology. Recent developments in the design of protein, nucleotide, lipid, and inorganic nanostructures will be discussed. Computational and experimental design approaches to create such nanostructures will be strongly emphasized during this course. Students will first be familiarized with the instrumentation required to characterize nanostructures. Emphasis will be on training students to pick the correct instrument and technique to characterize a given nanobiostructure. Students will be introduced to protein nanostructures. Students will be familiarized with algorithms and approaches to design these nanostructures, along with their potential applications and drawbacks. DNA and lipid nanostructures will be similarly discussed. Special emphasis will be given to the application of lipid nanoparticles in mRNA vaccines. After completing this course, students should be able to understand and apply approaches for designing nanostructures to fit an application of their choosing. ### 2. Course Size and Credits: | Number of Credits | 3 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of laboratory Hours | 00 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | # Teaching, Learning and Assessment # 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - CO1. Explain how a given instrument should be used to answer a given question regarding a given nanobiostructure. I concerns in various field of Biotechnology - **CO2.** Explain the approaches to designing protein nanostructures. Explain potential applications for protein nanocages. - **CO3.** Explain the approaches to designing DNA nanostructures. The student should be able to design an elementary DNA nanostructure by hand. - **CO4.** Explain the various types of lipid nanostructures. Understand the developmental milestones that lead to the creation of the Covid mRNA vaccines. - CO5. Explain how biomolecules interface with inorganic nanostructures. Page-195cof 211co Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 ### 4. Course Contents ## Theory **Unit 1. Instrumentation used for studying nanostructures:** Scanning electron microscopy, transmission electron microscopy, cryo electron microscopy, atomic force microscopy, nuclear magnetic resonance (NMR), small angle X-ray scattering, X-ray crystallography, Dynamic light scattering, Fast Protein Liquid Chromatography (FPLC) **Unit 2 Protein nanostructures: Principles for the design of ideal protein structures.** Computational tools for protein design: Rosetta and Alphafold. Algorithms for protein design: Simulated annealing optimization and deep learning. Examples of protein nanocages and their applications in vaccine design. **Unit 3. DNA nanostructures: DNA origami:** Design principles in 2 dimensions. Design principles in 3 dimensions. Elementary graph theory and the design of asymmetric DNA polyhedra. Approaches to DNA nanocage design: one-pot approach, modular assembly, hierarchical self-assembly, and DNA origami-based approaches. Functional DNA nanocages as tools for drug delivery: configurability via ligands, biomolecules, and pH inputs. Nucleic acid nanomachines: DNA walkers. **Unit 4 Lipid nanostructures:** Liposomes: the synthesis of small unilamellar vesicles (SUV), large unilamellar vesicles (LUV), multilamellar vesicle (MLV), and multivesicular vesicles (MVV), and their application to drug delivery. Solid lipid nanoparticles (SLNs) and their application to drug delivery. Covid19 mRNA vaccines: lipid nanoparticles for intracellular mRNA delivery. **Unit 5 Biofunctionalized inorganic nanostructures:** Bioconjugated gold nanoparticles (BGNs): conjugation with oligonucleotides, enzymes, DNA, and antibodies. Bioconjugated graphene, mica, carbon nanotubes, and fullerenes. Directed nanostructure biomineralization via calcium carbonate and silica. # 5. CO-PO PSO Mapping: | | ē | P02 | Pos | Š. | Pos | P06 | P07 | POB | P09 | POHO | <u>§</u> | P012 | PSO1 | PS02 | Decoa | |------|---|-----|-----|----|-----|-----|-----|-----|-----|------|----------|------|------|------|-------| | CO-1 | 3 | 2 | | | | | | | | | | 1 | 1 | 2 | 1 | | CO-2 | 3 | 3 | 2 | | | | 1 | | | 1 | | 3 | 3 | 2 | 2 | | CO-3 | 3 | 3 | 2 | | | | 1 | | | 1 | | 3 | 3 | 2 | 2 | | CO-4 | 3 | 3 | 2 | | | | 1 | | | 1 | 6 | 3 | 3 | 2 | 2 | | CO-5 | 3 | 3 | 2 | | | | 1 | | | 1 | | 3 | 3 | 2 | 2 | Dep Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M Selences Bangaloro - 500 054 Repe, 196 of 211 nics M.S. Ramiciah Univesity of Applied Sciences Bangalore - 560 054 # 6. Course Teaching and Learning Methods: | Feaching and Learning Methods | Duration In hours | Total Duration in
Hours | |---|-------------------|----------------------------| | Face to Face Lectures | | 20 | | Demonstrations | | | | Demonstration using Videos | 02 | | | Demonstration using Physical Models | 01 | 05 | | Demonstration on a Computer | 02 | | | Numeracy | | 0 | | Solving Numerical Problems | 0 | | | Practical Work | | | | 1. Course Laboratory | 0 | | | 2. Computer Laboratory | 0 | | | 3. Engineering Workshop / Course/Workshop / Kitchen | 0 | o | | 4. Clinical Laboratory | 0 | 1 | | 5. Hospital | 0 | | | 6. Model Studio | 0 | | | Others | | | | Case Study Presentation | 02 | | | 2. Guest Lecture | 02 | 10 | | 3. Industry / Field Visit | 0 |] 10 | | 4. Brainstorming Sessions | 02 | | | 5. Group Discussions | 02 | | | 6. Discussing Possible Innovations | 02 | | | erm Test and Written Examination | | 10 | | Total Duration in Hours | | 45 | # 7. Method of Assessment The components and subcomponents of course assessment is presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment
questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. DEASP 197a062111bs M.S. Ramaiah University of Applied Sciences Bangalore - 550 054 | | Focus of Course | e Learning Outcome | s in each component a | ssessed | |------|-------------------------|---|--|----------| | | | SEE
(40% Weightage) | | | | | SC1
(Term Tests) 30% | SC2
(Innovative + Lab
assignment) 10% | SC3
(Written + Lab
Assignment) 20% | 50 Marks | | | (25 + 25 Marks) | 10 Marks | 40 Marks | | | CO-1 | X | X | | X | | CO-2 | Х | Х | | Х | | CO-3 | Х | X | Х | Χ | | CO-4 | Х | | Х | Х | | CO-5 | X | | X | Х | # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | How imparted during the course | |------|------------------------------------|--------------------------------| | 1 | Knowledge | Classroom lectures | | 2 | Understanding | Classroom lectures, self-study | | 3 | Critical Skills | Assignment | | 4 | Analytical Skills | Assignment | | 5 | Problem Solving Skills | Assignment, Examination | | 6 | Practical Skills | Assignment | | 7 | Group Work | _ | | 8 | Self-Learning | Self-study | | 9 | Written Communication Skills | Assignment, examination | | 10 | Verbal Communication Skills | | | 11 | Presentation Skills | | | 12 | Behavioral Skills | | | 13 | Information Management | Assignment | | 14 | Personal Management | - | | 15 | Leadership Skills | | # 9. Course Resources # a. Essential Reading Page 198 of 211 M.S. Ramaisk University of Applied Sciences Bangalore - 560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Suppositive Dictochnology Applied Sciences M S Ramaiah University of Applied Sciences - 1. Class Notes - 2. Nanoscience And Nanotechnology: Fundamentals Of Frontiers (Wiley). MSR Rao, S. Singh - 3. Nanobiotechnology, First Edition (MJP Publishers). S. Balaji ## b. Recommended Reading - 1. Huang, Po-Ssu, Scott E. Boyken, and David Baker. "The coming of age of de novo protein design." Nature 537.7620 (2016): 320-327. - 2. Koga, Nobuyasu, et al. "Principles for designing ideal protein structures." Nature 491,7423 (2012); 222-227. - 3. Kaufmann, Kristian W., et al. "Practically useful: what the Rosetta protein modeling suite can do for you." *Biochemistry* 49.14 (2010): 2987-2998. - 4. Divine, Robby, et al. "Designed proteins assemble antibodies into modular nanocages." *Science* 372.6537 (2021): eabd9994. - 5. Hsia, Yang, et al. "Design of a hyperstable 60-subunit protein icosahedron." *Nature* 535.7610 (2016): 136-139. - 6. Butterfield, Gabriel L., et al. "Evolution of a designed protein assembly encapsulating its own RNA genome." *Nature* 552.7685 (2017): 415-420. - Philippidis, Alex. "Icosavax: Giving VLPs the VIP Treatment: CEO Adam Simpson tells GEN Edge COVID-19 and RSV vaccines are clinic-bound with \$100 M in Series B financing." GEN Edge 3.1 (2021): 231-237. - Rothemund, Paul WK. "Folding DNA to create nanoscale shapes and patterns." Nature 440,7082 (2006): 297-302. - 9. Dey, Swarup, et al. "DNA origami." Nature Reviews Methods Primers 1.1 (2021): 13. - 10. Chandrasekaran, Arun Richard, and Oksana Levchenko. "DNA nanocages." *Chemistry of Materials* 28.16 (2016): 5569-5581. - 11. Hu, Qinqin, et al. "DNA nanotechnology-enabled drug delivery systems." Chemical reviews 119.10 (2018): 6459-6506. - 12. Bozzuto, Giuseppina, and Agnese Molinari. "Liposomes as nanomedical devices." *International journal of nanomedicine* 10 (2015): 975. - Lingayat, Vishal J., Nilesh S. Zarekar, and Rajan S. Shendge. "Solid lipid nanoparticles: a review." Nanoscience and Nanotechnology Research 4.2 (2017): 67-72. - 14. Schoenmaker, Linde, et al. "mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability." *International journal of pharmaceutics* 601 (2021): 120586. - 15. Giljohann, David A., et al. "Gold nanoparticles for biology and medicine." Spherical Nucleic Acids (2020): 55-90. - 16. Sardar, Rajesh, et al. "Gold nanoparticles: past, present, and future." *Langmuir* 25.24 (2009): 13840-13851. - 17. Vrieling, Engel G., et al. "Controlled silica synthesis inspired by diatom silicon biomineralization." *Journal of Nanoscience and Nanotechnology* 5.1 (2005): 68-78. Faculty of Life Allied Health Sch. M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Shut Walley M.S. Ramaid University of Applied Science | Course Title | Green Energy Technologies | | |--------------|--|--| | Course Code | BTE403A | | | Department | Biotechnology | | | Faculty | Faculty of Life and Allied Health Sciences | | ## 1. Course Summary This course has been designed with the objective to acquaint the students with alternative energy sources briefly touching upon all the green energy technologies available. The course deals with detailed knowledge of use of bioresources including agricultural and municipal waste valorisation, recent developments and future prospects. Students will be able to acquire knowledge about the scientific and technological advances in biofuel technology and its role in sustainable development. ### 2. Course Size and Credits: | Number of Credits | 3 | | |--------------------------------------|-------------------------------|--| | Total Hours of Classroom Interaction | 45 | | | Number of laboratory Hours | 0 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 100 | | | Pass Requirement | As per university regulations | | | Attendance Requirement | As per university regulations | | ## Teaching, Learning and Assessment ## 3. Çourse Outcomes (COs) After the successful completion of this course, the student will be able to: - CO 1. Explain the use, advantages and disadvantages use of enzymes, microorganisms, plants and organic wastes to produce biofuels. - CO2. Understand the role of biotechnology in the production of biofuels. - CO3. Critically assess the possibility of implementation of carbon neutral technologies for alternative fuels and their contribution to national energy security and development ### 4. Course Contents # Theory **Unit 1. Renewable energy source**: Hydropower, geothermal power, solar power, wind power – Biofuel -Biomass - Feed stocks (agricultural crops, bioenergy crops, agricultural waste residues, wood residues, waste streams) **UNIT 2. Fuel technology and bioconversion History**: Definition of biofuel, applications of biofuel (transport, direct electricity generation, home use and energy content of biofuel) - Bioconversion of lignocellulosics, cellulose saccharification, pretreatment technologies (air separation process, mechanical size reduction, autohydrolysis) - Pulping and bleaching - M.S. Rame in University of Applied Sciences Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Spepater by a Richard nov Enzymatic deinking. **UNIT 3. Biogas:** biogas plant, feed stock materials, biogas production, factors affecting methane formation - Role of methanogens - Biohydrogen production - Oxygen sensitivity problems in hydrogenenases **UNIT 4: Bio ethanol and butanol:** advantages of ethanol over fossil fuels, production of ethanol from cellulosic materials, ethanol recovery - Biobutanol production, energy content and effects on fuel economy - Octane rating, air fuel ratio, specific energy, viscosity, heat of vaporization -Butanol fuel mixtures **UNIT 5. Blodiesel** Production of biodiesel, oil extraction from algae by chemical solvents, enzymatic, expeller press - Osmotic shock and ultrasonic assisted extraction - Applications of biodiesel, environmental benefits and concerns # 5. CO-PO PSO Mapping: | | 5 | 20 | ష | 졏 | Š | ő | 8 | 80 | <u>8</u> | P046 | P04 | PO12 | PSO1 | PS02 | BSG3 | |------|---|----|---|---|---|---|-----|----|----------|------|-----|------|------|------|------| | CO-1 | 3 | · | - | * | 1 | | | 1 | - | 3 | - | - | | | 1 | | CO-2 | 3 | - | - | | 3 | - | 135 | 3 | | 1 | - | - | | 9.53 | - | | CO-3 | 3 | - | - | 9 | 3 | - | | 1 | - | 3 | - | - | - | 100 | 1 | ## 6. Course Teaching and Learning Methods: | eaching and Learning Methods | Duration in hours | Total Duration in
Hours | |---|-------------------|----------------------------| | Face to Face Lectures | 36 | | | Demonstrations | | | | 1. Demonstration using Videos | 02 | | | Demonstration using Physical Models | - 01 | 03 | | 3. Demonstration on a Computer | | | | Numeracy | | | | Solving Numerical Problems | | | | Practical Work | | | | 1. Course Laboratory | | | | 2. Computer Laboratory | | | | 3. Englneering Workshop / Course/Workshop / Kitchen | | | | 4. Clinical Laboratory | | | | 5. Hospital | | | | 6. Model Studio | | | | Others | | | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M Separate Council in its 31st meeting held on 22nd March 2024 M.S. Ranyliah University of Applied Sciences Bangelore - 560 054 Bangalore - 560 054 | Total Duration in Hours | | 45 | |----------------------------------|----|----| | erm Test and Written Examination | | 04 | | Discussing Possible Innovations | 01 | 1 | | 5. Group Discussions | 01 | | | Brainstorming Sessions | | | | 3. Industry / Field Visit | | | | 2. Guest Lecture | 01 | | | Case Study Presentation | | | ### 7. Method of Assessment The components and subcomponents of course assessment is presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to
test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | | Focus of Course | e Learning Outcome | s in each component a | ssessed | | | |------|-------------------------|---|--|----------|--|--| | | | SEE
(40% Weightage) | | | | | | | SC1
(Term Tests) 30% | SC2
(Innovative + Lab
assignment) 10% | SC3
(Written + Lab
Assignment) 20% | 50 Marks | | | | | (25 + 25 Marks) | 10 Marks | 40 Marks | | | | | CO-1 | X | Х | | Х | | | | CO-2 | X | Х | | Х | | | | CO-3 | X | X | X | Х | | | # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | How imparted during the course | | |------|------------------------------------|--------------------------------|--| | 1 | Knowledge | Classroom lectures | | | 2 | Understanding | Classroom lectures, self-study | | | 3 | Critical Skills | Assignment | | | 4 | Analytical Skills | | | | 5 | Problem Solving Skills | Assignment, Examination | | | 6 | Practical Skills | - | | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 | Group Work | •• | |------------------------------|---| | Self-Learning | Self-study | | Written Communication Skills | Assignment, examination | | Verbal Communication Skills | | | Presentation Skills . | ** | | Behavioral Skills | | | Information Management | Assignment | | Personal Management | - | | Leadership Skills | 0.7 | | | Self-Learning Written Communication Skills Verbal Communication Skills Presentation Skills Behavioral Skills Information Management Personal Management | #### 9. Course Resources # a. Essential Reading - Alain A. Vertès, Nasib Qureshi, Hans P. Blaschek, Hideaki Yukawa(eds)(2010) Biomass to Biofuels: Strategies for Global Industries.Print ISBN:9780470513125 [Online ISBN:9780470750025 [DOI:10.1002/9780470750025 John Wiley & Sons, Ltd - 2. Twidell., J & Weir., T.(2006)Renewable energy resources, Taylor & Francis 2nd Edition. - 3. Elsa Cooper (2016) Bioresource Technology: Concepts, Design and Applications ISBN-13-9781682862261, ISBN-10-1682862267 Publisher:Syrawood Publishing House. ## b. Recommended Reading 1. Luque, R., Camp, J., Hand book of biofuel production processes and technologies, Woodhead publishing ltd., 1st Edition, 2011. Faculty of Line Addison Month Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCIENCES BANGALORE-560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Department of Emilectinology M S Representation of Emile Sciences Engaloro - \$33 054 M.S. Ramaiah Univesity of Applied Sciences Bangalore - 560 054 | Course Title | Internship | |--------------|--| | Course Code | BTM401A | | Department | Biotechnology | | Faculty | Faculty of Life and Allied Health Sciences | ## 1. Course Summary The aim of this course is to enable students to experience a working environment in a Biopharmaceutical or Life Science organization. The students visit various departments of an organization and observe the activities in the units as Research & Development, Manufacturing and Production, clean rooms and other relevant units and relate to underlying theoretical and practical concepts. Students are also required to understand the principles and processes practiced in the downstream and upstream processing involved in the production of any Biomolecule. ### 2. Course Size and Credits: | Number of Credits | 3 | | |---|---------------------------|--| | Total number of hours available per student | 60 | | | Number of Semester Weeks | 16 | | | Department Responsible | Biotechnology | | | Course Marks | 50 | | | Pass Requirement | As per Academic Documents | | | Attendance Requirement | As per Academic Documents | | ## Teaching, Learning and Assessment ## 3. Course Outcomes (COs) After the successful completion of this course, the student will be able to: - **CO1.** Discuss the organizational vision, mission, core values and structure relating to its products - CO2. Discuss the functional areas, and operational activities of various sectors of Biopharmaceutical industries - CO3. Summarize SWOT analysis, GLP and GMP of the organization - CO4. Explain the regulatory measures for new biomolecule production and launching - CO5. Prepare internship report as per prescribed format #### 4. Course Contents ### Theory - 1. Study the profile, Vision and Mission, Product range of the organisation - 2. Study organisational structure of the selected organisation in relation to the product development - 3. Conduct a detailed SWOT analysis of the organization - 4. Study Functional areas and Operational activities of various sectors of Model Page 204 of 211 M.S. Ramaiah University of Applied Sciences Bangalore - 560 054 Biopharmaceutical industries - 5. Select a particular function in the department and study the process in detail including the various stakeholders involved - 6. Identify good laboratory practices and good manufacturing practices in the sectors - 7. Regulatory bodies and regulations involved in production and launching of a biomolecule - 8. Prepare and present internship report in the prescribed format. # 5. CO-PO PSO Mapping: | | POT | P02 | PG | P04 | S | PO6 | P07 | 80 | P09 | PO10 | <u>8</u> | PO12 | PS01 | PS02 | PS03 | |------|-----|-----|----|-----|-------|----------|---------|---------|----------|---------|----------|---------|------|------|------| | CO-1 | 2 | 2 | · | - | * | - | - | | - | | * | - | 1 | | 1 | | CO-2 | 2 | 2 | - | - | 3 | - 1 | - | 300 | 1 | 1 | - | - | 1 | 2 | ١. | | CO-3 | - | :*: | 2 | - | 3 | - | - | 223 | 1 | 1 | - | 3 | - | 2 | | | CO-4 | - | 1.5 | 2 | - | 3 | - | - | UZ. | - | - | 3 | 3 | | 2 | | | CO-5 | - | 4 | 2 | - | 3 | - | - | 120 | - | - | 4 | 3 | | 2 | | | | | | | | 3: Hi | gh Influ | ence, 2 | 2: Mode | erate In | fluence | e, 1: Lo | w Influ | ence | i.h | 1 | # 6. Course Teaching and Learning Methods: | eaching and Learning Methods | Duration in hours | Total Duration in Hours | |--|-------------------|-------------------------| | Face to face interaction | 04 | | | Industry Internship | | | | Field work | 40 | | | Report Writing | 10 | 85 | | Presentation preparations | 03 | | | Evaluation of Report and Presentations | 03 | | | Total Duration in Hours | | 60 | ## 7. Method of Assessment The components and subcomponents of course assessment is presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. | Focus | of Course Learning Outcomes in each com | ponent assessed | |-------|---|------------------------| | | CE (60% Weightage) | SEE
(40% Weightage) | | | 30 Marks | 20 Marks | Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M.S. Ranzaigh University of Applied Sciences | CO-1 | X | | |------|---|---| | CO-2 | X | | | CO-3 | X | | | CO-4 | X | | | CO-5 | | х | Component - 1: 60% weight - Presentation and Viva-voce Component - 2: 40% weight - Internship Report The Course Leader assigned to the course, in consultation with the Head of the Department, shall provide the focus of course outcomes in each component assessed in the above template at the beginning of the semester. Course reassessment policies are also presented in the Academic Regulations document. # 8. Achieving Course Learning Outcome The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | How imparted during the course | |------|------------------------------------|--| | 1. | Knowledge | Internship | | 2. | Understanding | Internship | | 3. | Critical Skills | Internship | | 4. | Analytical Skills | Internship | | 5. | Problem Solving Skills | Internship | | 6. | Practical Skills | Internship | | 7. | Group Work | Internship | | 8. | Self-Learning | Internship Report | | 9. | Written Communication Skills | Internship Report, Logbook/Internship Diary | | 10. | Verbal Communication Skills | Presentation | | 11. | Presentation Skills | Presentation | | 12. | Behavioral Skills | Interaction with employees of the organization | | 13. | Information Management | Internship Report | | 14. | Personal Management | Internship | | 15. | Leadership Skills | | ### 9. Course Resources # a. Essential Reading - 1. Organization website - 2. Organisation documents - 3. Study on the Industry sectors # b. Websites 1. https://www.nseindia.com/ Page 206 of 2113 M.S. Ramalin University of Applied Sciences Bangalore - 560 054 M. S. Ramaiah University of Applied Sciences **Course Specifications** of B.Sc. (Hons) in Biotechnology Programme Code: 018 **SEMESTER 8** Department of Biotechnology Faculty of Life and Allied Health Sciences M S Ramaiah University of Applied Sciences M.S. RAMAIAH UNIVERSITY OF APPLIED SCI.... Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 Desertion Land Sciences M.S. Ramaiah University Adaptived Sciences Bangalora 500 054 M.S. Recaign University of Applied Sciences | Course Title | Research Project | | |--------------
---------------------------------|--| | Course Code | BTP401A | | | Programme | B.Sc. Biotechnology | | | Department | Biotechnology | | | Faculty | Life and Allied Health Sciences | | ## 1. Course Summary This Course is intended to give an insight to the students on application of principles of research methodology, preparation of research project proposal, research project management, execution of research project and effective technical communication and presentation. It also emphasizes the need and the relevance of a structured approach to identify a research topic and undertake research. This Course provides an opportunity for students to apply theories and techniques learnt during programme work. It involves in-depth work in the chosen area of study. ### 2. Course Size and Credits: | Number of credits | 21 | | | |--|-------------------------------|--|--| | Total hours of interaction during the Course | 315 hours | | | | Department responsible | Biotechnology | | | | Course marks | 200 | | | | Pass requirement | As per University regulations | | | | Attendance requirement | As per University regulations | | | ## Teaching, Learning and Assessment ## 3. Course Outcomes After undergoing this course students will be able to: - CO1. Identify and define a research question in the domain of Biotechnology/Life Sciences - CO2. Formulate a hypothesis to address the research question - CO3. Propose methodology to test the hypothesis - CO4. Analyse the data collected through experiments - CO5. Prepare a project report as per the specified guidelines - CO6. Presentation of research findings in an appropriate forum #### 4. Course Contents The Research Project will cover the following: - 1. Identification and Defining of the Research Problem - 2. Literature review/Information search, retrieval - 3. Framing Research Methodology - 4. Problem solving Evaluation, Interpretations and drawing conclusions - 5. Proposing ideas or methods for further work Pege 268 of 211 A.S. Ramais N University of Applied Sciences Bandalore - 580 054 Departinal Approval by the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramaiah University Computed Sciences Lunguage Council of the Academic Council in its 31st meeting held on 22nd March 2024 M S Ramaiah University Computed Sciences - 6. Thesis writing - 7. Oral presentation/ Viva voce - 5. CO-PO Mapping | | 5 | P02 | S
S | Ş | Š. | 80 | P07 | 90g | õ | PO:10 | P 011 | P012 | PSOM | PS02 | PSO3 | |------|-----|-----|--------|-----|----|----|-----|-----|---|-------|--------------|----------|------|------|------| | CO-1 | 3 | - | | | 3 | - | 2 | 1 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | | CO-2 | - | 3 | - | | 3 | - | 2 | 1 | 3 | 3 | 2 | | 3 | 3 | 3 | | CO-3 | - | - | 3 | - | 3 | - | 2 | 1 | 2 | 3 | 2 | 3 | 3 | 2 | 3 | | CO-4 | - | | - | 3 | 3 | - | 2 | 1 | 2 | 2 | 2 | 3 | 3 | 2 | 3 | | CO-5 | 1-1 | - | - | 3 | 3 | 3 | 2 | 1 | 2 | 1 | 2 | · | 3 | 3 | 3 | | CO-6 | - | - | | S#3 | 3 | 3 | 2 | 1 | 2 | 1 | 2 | | 3 | 3 | 3 | # 6. Course Teaching and Learning Methods | Teaching and Learning Methods | Duration in hours | |--|-------------------| | Defining Problem, Aim, Objective & Methodology in concurrence with academic and industrial guide | 10 | | 2. Literature Review | 20 | | 3. Plan, design and execution of experiments | 130 | | 4. Data collection, Analysis and Interpretation | 45 | | 5. Discussion with supervisor | 10 | | 6. Propose solution / Design / Model etc | 45 | | 7. Demonstration, Presentation and Technical | 30 | | 8. Report presentation | 25 | | Total Duration in Hours | 315 | ### 7. Method of Assessment The components and subcomponents of course assessment are presented in the Academic Regulations document pertaining to the Programme. The procedure to determine the final course marks is also presented in the Academic Regulations document as well. The assessment questions are set to test the course learning outcomes. In each component or subcomponent, certain Course Outcomes are assessed as illustrated in the following Table. There are two components for assessment in this course: | | | Type of Asse | essment | |-----|----------------|--|--| | No. | Course Outcome | Component-I
(Presentation, Viva-voce, Demonstration)
120 Marks | Component-II
(Project Report)
80 Marks | | 1 | CO1. | Х | X | Page 209 of 211 Dean - Academics M.S. Ramaiah University of Academics | 2 | CO2. | Х | Х | |---|------|---|---| | 3 | CO3. | Х | Х | | 4 | CO4. | Х | Х | | 5 | CO5. | Х | Х | **Component - 1: 60% weight -** Conduction of Laboratory exercises, presentation, viva voce and demonstration will be evaluated for maximum of 120 marks **Component - 2: 40% weight -** Submission of project report will be evaluated in the semester end examination for maximum of 80 marks. The assessment questions are set to test the learning outcomes. In each component certain learning outcomes are assessed. The above table illustrates the focus of learning outcome in each component assessed. The Course Leader assigned to the course, in consultation with the Head of the Department, shall provide the focus of course outcomes in each component assessed in the above template at the beginning of the semester. Course reassessment policies are also presented in the Academic Regulations document. ## 8. Achieving Course Learning Outcomes The following skills are directly or indirectly imparted to the students in the following teaching and learning methods: | S.No | Curriculum and Capabilities Skills | How imparted during the course | | | | |------|------------------------------------|---|--|--|--| | 1. | Knowledge | Project Work | | | | | 2. | Understanding | Project Work\ Interaction with Supervisor | | | | | 3. | Critical Skills | Project Work | | | | | 4. | Analytical Skills | Project Work | | | | | 5. | Problem Solving Skills | Project Work | | | | | 6. | Practical Skills | Project Work | | | | | 7. | Group Work | Project Work | | | | | 8. | Self-Learning | Project Work | | | | | 9. | Written Communication Skills | Project Report | | | | | 10. | Verbal Communication Skills | Examination, Viva-Voce | | | | | 11. | Presentation Skills | Presentation, Viva-Voce | | | | | 12. | Behavioral Skills | Project Work | | | | | 13. | Information Management | Project Report | | | | | 14. | Personal Management | Project Work | | | | | 15. | Leadership Skills | | | | | M S Ramaiah University of Applied Sciences Page 210 of 211 M.S. Ramair h Univesity of Applied Sciences ### 9. Course Resources ## a. Essential Reading 1. Gurumani, N., 2006, Research methodology for biological sciences, MJP Publishers. # b. Recommended Reading 1. Gurumani, N., 2010, Scientific Thesis Writing And Paper Presentation, 1st Edition, MJP Publishers. ### c. Web resources - 1. https://www.ncbi.nlm.nih.gov/pubmed - 2. https://www.sciencedirect.com/ - 3. https://www.biomedcentral.com/ - 4. http://www.nature.com/ - 5. https://www.ceil.com/ ## d. Other Electronic Resources 1. Journals related to the respective topics of research Realth Sciences M.S. RAMAIAH UNWERSTI GES. PPLIED SCIENCES BANGALORE-560 054 Final Approval by the Academic Council in its 31st meeting held on 22nd March 2024 templied Sciences M.S. Rama